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Abstract
High-level synthesis (HLS) tools automatically synthesise
hardware from imperative programs and have seen a sig-
nificant rise in adoption in both industry and academia. To
deliver high-quality hardware designs for increasingly gen-
eral purpose programs, HLS compilers have to become more
aggressive. For the most irregular programs, HLS tools gen-
erating dataflow circuits show promising performance by
adapting and specializing key ideas from processor architec-
tures, like out-of-order execution and speculation. However,
the complexity of these transformations makes them difficult
to reason about, increasing the risk of subtle bugs and po-
tentially delaying their adoption in a conservative industry
where bugs can be extremely costly.

This paper introduces Graphiti, a framework embedded
in the Lean 4 proof assistant designed to formally reason
about and manipulate dataflow circuits at the core of these
HLS tools. We develop a metatheory of graph refinement
that allows us to verify a general-purpose dataflow circuit
rewriting algorithm. Using this framework, we formally ver-
ify a loop rewrite that introduces out-of-order execution into
a dataflow circuit. Our evaluation shows that the resulting
verified optimization pipeline achieves a 2.1× speedup over
the in-order HLS flow and a 5.8× speedup over a verified
HLS tool generating a static state machine. We also show
that it achieves the same performance compared to an ex-
isting unverified approach which introduces out-of-order
execution.

Graphiti is a step toward a fully-verified HLS flow tar-
geting dataflow circuits. In the interim, it can serve as an
extensible, verified, optimizing engine that can be integrated
into existing dataflow HLS compilers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’26, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790166

CCS Concepts: • Hardware → Datapath optimization;
Theorem proving and SAT solving; •Computer systems
organization→ Data flow architectures; • Software and
its engineering → Software verification.

Keywords: high-level synthesis; interactive theorem prov-
ing; Lean 4

ACM Reference Format:
Yann Herklotz, Ayatallah Elakhras, Martina Camaioni, Paolo Ienne,
Lana Josipović, and Thomas Bourgeat. 2026. Graphiti: Formally
VerifiedOut-of-Order Execution in DataflowCircuits. In Proceedings
of the 31st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’26), March 22–26, 2026, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3779212.3790166

1 Introduction
The last few years have seen the integration of many hard-
ware accelerators [16, 35, 41, 55, 57, 63] into most computing
stacks, from data centers to handheld devices. While the tra-
ditional design methodology consisting of manually writing
the register-transfer level (RTL) description of the hardware
designs is still considered the gold standard if one can afford
it, there are now viable alternatives to explore higher-level
descriptions for hardware accelerators.

The automatic synthesis of hardware from imperative pro-
grams – a process known as high-level synthesis (HLS) –
has seen a rise in adoption in both industry [25, 59–62] and
academia [9, 10, 26, 33, 34]. For an ever-growing set of fam-
ilies of algorithms, the fast development speed and the de-
creased cost of design and verification make HLS tools viable
for producing good-quality hardware. In another common
scenario, the value of HLS tools resides in its ability to per-
form quick prototype design exploration, for example when
standardization committees need to quickly acquire confi-
dence that suggested updates to an upcoming standard are
likely efficiently hardware-implementable [54].

To deliver high-quality hardware designs for increasingly
general purpose programs (with less regular and obvious
parallelism), HLS compilers have to become more aggressive
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Figure 1. Tool flow, starting with a dot graph input and run-
ning rewrites by matching a subgraph on a standard graph
representation we call ExprHigh, followed by performing
the rewrite on an inductively defined graph representation
called ExprLow.

in their optimization strategies, pushing beyond the original
standard parallelization-extraction techniques required for
the workloads. While most of the industrial tools have been
using so-called static scheduling to transform regular C loop
nests into statically scheduled circuits, for more irregular
benchmarks, dynamically scheduled HLS (also known as
dynamic HLS) has started to show promise.

Typically, dynamic HLS tools extract a dataflow graph
from the source C program, and map this graph to a cor-
responding latency-insensitive circuit [8, 19, 37], which we
call a dataflow circuit. Multiple research efforts have pro-
posed various compilation strategies to improve the quality
of the dataflow circuits obtained from dynamic HLS [6, 14,
23, 27, 37, 40, 44, 47, 68]. These strategies span a wide range
of optimizations, from queue sizing and placement, to more
general transformations, like identifying shareable modules.
In particular, there have been recent proposals in the HLS
community demonstrating promising performance benefits
by introducing fine-grained out-of-order execution for partic-
ular program segments [15, 22]. This departure from strictly
ordered execution represents an interesting advancement
in HLS optimization. However, once operations can be re-
ordered, ensuring correctness becomes substantially more
challenging (and interesting!). Optimizations can easily be-
come unsound (as wewill see in section 6) when assumptions
and guarantees are not clearly stated.

We propose to see such dataflow circuit optimizations
as graph transformations, which we call dataflow graph
rewrites by analogy to traditional optimizing software com-
pilers that are performing term rewrites. Just as defining
the correctness of term rewrites requires formal language
semantics and a notion of program equivalence, so does prov-
ing the correctness of dataflow graph rewrites also require
a formal semantics and a corresponding notion of equiva-
lence (or, more precisely, simulation). In particular, tradi-
tional Kahnian-semantics [42, 43] are insufficient to express

and study the correctness of some rewrites (section 7) due
to out-of-order execution requiring local nondeterminism.

More concretely, reasoning about out-of-order execution
is a core problem in software and hardware design. Debug-
ging out-of-order bugs is challenging and time-consuming
due to the many more subtle emerging behaviors [69]. We
tackle these challenges by developing Graphiti [30], a Lean
4 [20] framework designed to ensure the correctness of dy-
namic HLS optimizations. The framework allows users to
define, formally prove, and apply dataflow circuit rewrites to
optimize dynamic HLS circuits. We demonstrate Graphiti’s
expressivity and practicality by implementing and formaliz-
ing a recently proposed dynamic HLS optimization. Specifi-
cally, we define a set of rewrites that introduce out-of-order
execution into a dataflow circuit and formally prove that
the transformation is correct, resulting in the expected no-
table performance gains. Additionally, we discovered that
the original implementation of this optimization incorrectly
optimized one of the reported benchmarks, described further
in section 6. An overview of Graphiti is shown in figure 1,
it accepts dataflow circuits, rewrites them using a verified
rewriting framework, and can either continue iterating or
output the dataflow circuit. Our key contributions are:

• A verified rewriting framework for dataflow circuits,
Graphiti, that provides a sound foundation for defin-
ing, verifying and applying dataflow circuit optimiza-
tions, described in section 4.

• A proof of correctness in Graphiti for a core rewrite
which is part of a novel graph-rewriting-based opti-
mization that introduces out-of-order execution to a
sequential dataflow circuits, described in section 3.

• An evaluation of our optimization introducing out-
of-order execution compared to the state-of-the-art
dynamic HLS tool called Dynamatic [39] and with
the unverified approach that also introduces out-of-
order execution [22]. We also compare with an exist-
ing verified statically scheduled high-level synthesis
tool called Vericert [31, 32]. We demonstrate that for-
mal verification can be integrated into a practical HLS
compilation flow and can be competitive with state-
of-the-art unverified flows.

2 Out-of-order execution in dataflow
circuits

In this section, we present a simple example that serves two
purposes: we informally introduce dataflow circuits and their
semantics and we demonstrate the advantage of out-of-order
execution in dataflow circuits generated by dynamic HLS.

Figure 2a shows an inlined implementation of a GCD com-
putation, where the outer loop iterates over two arrays and
computes their GCD. A dataflow circuit implementing the
inner do-while loop which computes the GCD is shown in
figure 2b. This dataflow circuit is the type of circuit that
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for(int i = 0; i < N; i++) {

a = arr1[i];

b = arr2[i];

do {

int temp = b;

b = a % b;

a = temp;

} while (b != 0);

result[i] = a;

}

(a) Inlined implementation
of a GCD calculation.
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Fork

Init

(𝑏, 𝑎 % 𝑏) (𝑎 % 𝑏 ≠ 0)

+ −

+ −

𝑎 𝑏

𝑟𝑒𝑠

(b) Circuit implementing
the inlined GCD func-
tion, following standard
techniques of dynamic
HLS [21, 37]. This circuit
executes sequentially, i.e., it
cannot accept new inputs
a and b before storing the
current result.

Merge

Branch

Split

Join

Sink

(𝑏, 𝑎 % 𝑏) (𝑎 % 𝑏 ≠ 0)

+ −
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𝑎 𝑏

𝑟𝑒𝑠

(c) Circuit implementing the
inlined GCD function, fol-
lowing the technique of a
recent work [22] that intro-
duces tagged out-of-order
execution to dataflow cir-
cuits.

1 % % % st

2 % % st

3 % st

(d) Execution trace for three loop executions of
the in-order circuit, showing that the modulo
operation cannot be pipelined.

1 % % % st

2 % % st

3 % st

(e) Execution trace for three loop executions
of the out-of-order circuit, showing that the
modulo operation is pipelined.

Figure 2. An example of how out-of-order execution in dataflow circuits increases the performance of the resulting circuit, at
a reasonable resource cost.

Table 1. Description of dataflow circuit components used in
dynamic HLS.

Component Description

Branch
+ −

A Branch passes the input to the left or right
if the condition is true or false respectively.

Mux
+ −

A Mux emits the left or right input if the con-
dition is true or false respectively.

Merge A Merge passes the first token on the left or
the right to the output.

Fork A Fork duplicates the input token.
Init An Init component produces an initial false

token and acts like a queue thereafter.
𝑜𝑝 An arbitrary circuit component implementing

an operator op.

Tagger

Untagger

A Tagger ensures that the outputs are emitted
in the order inwhich theywere accepted, even
though theymight have been reordered inside
the tagger region.

Split Splits a tuple into the left and right parts.
Join Creates a tuple, synchronising the inputs.

Reorg
𝐴 × 𝐵

𝐵 × 𝐴

Reorganises values in a tuple according to the
type signatures on the ports.

Pure 𝑓 Application of the pure function 𝑓.

would have been generated by a dynamic HLS tool [21, 37].
All components we are describing are dataflow components,

also known as elastic components, and provide a latency-
insensitive interface. This includes the Mux node, for exam-
ple, which does not behave like a traditional combinational
component. The loop is guarded by Mux and Branch com-
ponents, having common conditions, at the boundaries of
the loop. Together, the Muxes and Branches govern the loop
initialization, loop iterations, and loop exit: every Mux takes
one initialization input (i.e., from the Join in figure 2b), sends
it to operators in the loop body, which passes a new value to
a Branch that in turn either sends the new value out, signal-
ing loop termination, or sends it back to the Mux signaling a
new loop iteration. The yellow operation block takes in the
loop input from the Mux and computes two outputs: (1) the
data output for the next iteration, which includes the GCD
operation, and (2) the termination condition, which is when
the modulo operation returns 0. The condition gets dupli-
cated by the Fork node, which sends the condition to the
Branch as well as the Mux node. For the latter, the condition
passes through an Init component, which can be thought
of as a queue with an initial true token in it. Such a circuit
structure results in a purely sequential implementation of
the loop, which follows the sequential execution of the C
program. The trace of the execution is shown in figure 2d,
where each loop iteration can only start when the previ-
ous one has finished computing. Table 1 describes the other
dataflow circuit components that are commonly used [37],
and are present in our circuit examples.
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However, assuming that the component implementing the
modulo operator in the body of the inner do-while loop is
pipelined, the sequential execution of figure 2b described
above fails to make use of this pipelining opportunity be-
cause it can only process one instance of loop execution at a
time. Elakhras et al. [22] showed that we can simply replace
a Mux guarding a loop with a Merge that is unconditional;
in doing so, they allow multiple instances of loop executions
to overlap and fill the pipeline slots of the modulo compo-
nent. Since the inner loop has a variable bound, we might
run into a situation similar to that explained above where
the output of the inner loop arrives to the store component
out of the program order. To ensure that the stores are done
correctly, a Tagger/Untagger is introduced. This component
tags tokens it receives at the input of the Tagger, so that
when the Branch sends the results to the Untagger, they can
be reordered correctly. Within the Tagger/Untagger region,
the circuit is responsible for correctly propagating the tag.
With this new out-of-order circuit, the execution can take ad-
vantage of the pipelined modulo operation, which results in
the much more efficient execution trace shown in figure 2e.

3 Graph rewriting and its application
The main goal of Graphiti is to provide an environment in
which one can define and reason about rewrites on these
dataflow circuits represented as graphs. In this section we
will give a high-level overview of what a rewrite is, and
how it is applied to a graph. We will be referencing specific
subfigures that appear in later pages, any other figures can
be ignored until they are described in later sections. One
example of a rewrite is shown in figure 3a, which replaces
two Mux nodes with a single Mux node. The rewrite is spec-
ified by a pair of graphs, with a left-hand side (lhs) and a
right-hand side (rhs). This rewrite is applied by a rewriting
function, together with a matching function which finds the
exact spot to apply the rewrite, and replaces the lhs with
the rhs. For example, we can apply this rewrite on the graph
shown in figure 4a, which is an expanded version of the
graph from section 2. The matching function identifies a
region of the graph, highlighted with a dashed red region,
that should be rewritten, and which should match the lhs of
the rewrite. The rewriting function then replaces the lhs by
the rhs in this graph, producing the graph in figure 4b.

The rewriting function also ensures correctness, assuming
that the rewrite itself has been proven correct. What do we
mean by correctness? At a high-level, we want to guarantee
that the rewriting function never introduces new behaviors
in the graph. Intuitively, behaviors can be thought of as traces
of input/output values of a graph.

In particular, if we have a rewrite where we prove that the
rhs ⊑ lhs, i.e. the rhs has less or the same behaviors as the
lhs, then if we apply the rewrite to graph 𝑔, producing 𝑔′, we
guarantee that 𝑔′ will also have less or the same behaviors

as 𝑔 (𝑔′ ⊑ 𝑔). By chaining such rewrites, we are sure that the
final optimized graph still has a subset of behaviors compared
to the input graph. The general architecture of Graphiti is
shown in figure 1. C++ input programs are transformed
into dataflow graphs by the dynamic HLS tool front-end,
which are then parsed by Graphiti into an ExprHigh graph.
This is a higher-level graph-based language similar to the
input dot graph language [1]. A rewrite is selected and its
matcher function is run to find a subgraph to be replaced.
The rewrite is applied on a lower-level graph representation
called ExprLow which is more suited to verification, and the
resulting graph is lifted back up to ExprHigh, where it can
be output or rewritten further.

3.1 Out-of-order execution using rewrites
To demonstrate the practicality and effectiveness of Graphiti,
we present a set of rewrites implemented in Graphiti that
perform the loop optimization presented in section 2. All
these rewrites are applied by the verified rewriting function,
providing an overall verified transformation assuming each
rewrite is verified. In total there are 20 rewrites that are
needed to perform the transformation, out of those there is
one core rewrite which performs the out-of-order transfor-
mation, whereas the remaining 19 are minor rewrites used
to normalize the structure of the loop. We verify the core
rewrite that introduces the out-of-order execution, described
in detail in section 5, whereas the other minor rewrites are
not verified. The rewriting strategy is independent from the
correctness theorem, so an arbitrary unverified oracle can
be used to guide where the rewrites are applied. We rely on
Elakhras et al. to mark the loops that should be executed
out-of-order. We then design an oracle to apply the rewrites
in a certain order to complete the optimization, which we
explain further in this section.

Figure 4 shows a completeworking example that optimizes
the graph from figure 2b to the graph described by figure 2c.
The loop in figure 4a is composed of two Muxes and two
Branches and should be made to execute out of order. There
are five phases in the rewrite procedure, where most phases
exhaustively apply the applicable rewrites in that phase.

1. The loop is normalized by combining the Muxes and
Branches by exhaustively applying rewrites like the
one shown in figure 3a, producing the graph shown
in figure 4b.

2. Additional nodes may have been introduced by these
rewrites, which have to be eliminated by exhaustively
applying rewrites like the ones shown in figure 3b.

3. Next, we need to prove that the loop body is acting
like a pure function; if the loop body is performing
side-effects, then performing them out-of-order may
be incorrect. We do this usingmore rewrites, incremen-
tally turning the body into a single Pure component,
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Mux Mux
Fork

𝑖0 𝑖1 𝑖2 𝑖3 𝑖4

𝑜0 𝑜1

+ − + −
Mux

Join Join

Split

𝑖0 𝑖1 𝑖2𝑖3 𝑖4

𝑜0𝑜1

+ −

(a) Combining two Muxes into a single
Mux.

Split

Join
Pure 𝑖𝑑

𝑖

𝑜

𝑖

𝑜

(b) Reducing con-
secutive Split and
Join into a wire.

Branch
Fork

𝑖0 𝑖1

𝑜0 𝑜1 𝑜2
+ −

Branch
Fork

Split

Join

+ −

𝑖0 𝑖1

𝑜0 𝑜1 𝑜2

(c) Introducing a Join that
joins the input of a Fork
and adding a Split right af-
ter.

Mux

Pure 𝑓

Split

Branch

Fork

Init
+ −

+ −
𝑖

𝑜

Merge

Pure 𝑓

Reorg

Branch

Split

Tagger

Untagger
+ −

𝑇

𝑇 × 𝐴 𝐶

𝐴 × 𝐵

𝑖

𝑜

(d) Out-of-order loop rewrite that
overlaps the execution of the loop’s
iterations. The datapath in the loop is
modeled by the pure function f that
has a single input and output.

Figure 3. Our dataflow circuit rewrites, separated into cate-
gories according to their purpose and effect.

which is a component with one input and one out-
put, that simply applies a function on the input. These
rewrites are guided by an external oracle, described
further in section 3.2.

4. We can then apply the main out-of-order loop rewrite
in figure 3d, and the resulting graph is shown in fig-
ure 4d. To apply this rewrite, we also have to carefully
introduce additional nodes like the Split node, using
rewrites like the one shown in figure 3c.

5. Finally, the pure node has to be turned back into the
graph that it is modeling. This can be simply done by
applying the exact rewrites that generated it in reverse,
getting back the original loop body.

This set of rewrites faithfully implements the original op-
timization and achieves the goal of correctly introducing
out-of-order execution in the loop by allowing multiple inde-
pendent loop iterations to run simultaneously and overtake
each other.

3.2 Pure generation rewrites
The body of the loops we are interested in rewriting could
be arbitrary. However, to be able to perform the out-of-order
loop rewrite, one has to prove that the loop body has two
essential properties: (1) for every input, exactly one output is
produced, and (2) computations are done in order. Instead of
trying to prove a side-condition which states this property

using analysis passes, we can reuse the rewrite engine to do
so. The Pure component, which is a component that applies
a function to its inputs, encapsulates precisely these proper-
ties. By showing that we can rewrite the loop body into an
instance of a Pure component, we prove it has the required
properties. The loop rewrite shown in figure 3d can then
use a Pure component as the body of the rewrite instead of
becoming a conditional rewrite on properties of the body.

The fact that Pure components can only have one input
makes Pure generation, in general, nontrivial on arbitrary
loop bodies, due to the presence of Forks that duplicate val-
ues, Sinks that discard values, and various operations that
require multiple inputs. Taking the loop body of figure 4b as
an example, we demonstrate the stages of Pure generation in
figure 5. The initial loop body is shown in figure 5a. The first
step is to replace each operator by a Pure implementation,
adding Join nodes if the operator required more inputs. The
resulting graph is shown in figure 5b. Next, Fork nodes are
moved to the top of the graph, duplicating any components
above the fork. This is shown in figure 5c. Next, we eliminate
Fork nodes by replacing them with a Pure implementation as
well, followed by a Split node, as shown in figure 5d. Finally,
we move Pure components as far up and down as possible,
leaving only a graph of Split and Join nodes, as shown in
figure 5e.

We are left with a subgraph of Split and Join nodes that
still needs to be eliminated. This should always be possible
by applying the associativity, commutativity and elimination
of Split and Join nodes. The order in which they need to be
applied to reduce this subgraph is unknown though. For this
we use egg [66] as an oracle. Egg is an e-graph rewriting
tool, that allows us to identify which rewrite to perform to
minimise the size of this Join and Split graph. This gives us
a sequence of rewrites that can be replayed in Graphiti to
eliminate this subgraph.

3.3 Main out-of-order loop rewrite
The rewrites presented above all serve as a preprocessing
step towards making the main out-of-order loop rewrite ap-
plicable. This rewrite searches for a loop structure composed
of a single Mux and a single Branch with a Pure function
and a Split in between, as shown in figure 3d. It converts the
Mux to a tagged Merge and inserts a Tagger/Untagger like
the one in figure 2c. It is fed from the input of the Merge
that comes from outside of the loop, and the output of the
Branch that goes outside of the loop. Converting a Mux to
a Merge introduces out-of-order execution by overlapping
multiple instances of execution of the loop, and adding the
Tagger/Untagger component reorders the output of the loop
before passing it to the rest of the circuit, as explained in
section 2.
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(a) Original circuit with multiple Muxes
and Branches for all loop-carried variables.
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(b) Join duplicateMuxes and
Branches.
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(c) Generate a Pure module
for the body of the loop.
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Fork
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𝑟𝑒𝑠

Pure 𝑓

(d) Parallelize the loop using
the main rewrite.

Figure 4. Complete example applying our rewrites on the inner loop of the simple array GCD program presented in Section 2.
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Pure ⋅ ≠ 0
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(d) Eliminate forks.
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Join

Split

Join Join

Pure 𝑓

Pure 𝑔

(e) Move pure modules.

Figure 5. Pure module generation from an arbitrary datapath. One more step is required after the last rewrite to remove all
the final Split and Join components and obtain a single Pure component.

4 Semantics and refinement of graphs
This section describes the syntax of the lower-level graph
language, which we call ExprLow, as well as its semantics
and how we define inclusion of behaviors in this semantics.
Semantics for ExprHigh are defined in terms of ExprLow,
by describing translations between these representations.
Notation. We denote a product of two types 𝐴 and 𝐵 as

𝐴×𝐵. Dependent sum types, describing a pair between a type
𝑇 and a dependent function 𝑓 from type to type, are denoted
as ∑𝑇 𝑓 (𝑇 ). We define 𝒫(⋅) as the powerset operation. For
a relation 𝑟 ⊆ 𝐴 × 𝐵, we use the notation 𝑟(𝑎, 𝑏) to denote
(𝑎, 𝑏) ∈ 𝑟. Finally, we denote finite maps from 𝐴 to 𝐵 as
𝐴 ↦ 𝐵.

4.1 Formal definition of ExprLow syntax
One peculiarity of our graph language is that our graphs
have to support inputs and outputs, which are represented
as dangling wires. Due to this, port names (𝐼) are either an
I/O port identified by a single natural number (Nat), or a
local name, which is identified by a pair of Str, representing
an instance name paired up with a wire name which will be
connected to another port in the graph.

In ExprLow the graph is defined inductively using a prod-
uct (⊗) constructor as well as a connect constructor. Defining
a graph structure inductively instead of, for example, defin-
ing it using an adjacency matrix, is a much more suitable
data structure for reasoning in an interactive theorem prover
like Lean 4. The purpose for this syntax is described further
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"Fork"

"%"

10

01
(a) ExprHigh rep-
resentation of the
GCD loop body.

"Fork""%" ⊗

connect( ("𝚏", "𝟶") , ("𝚖", "𝟷") ,

)
0 ↦ ("𝚏", "𝟶") 1 ↦ 0

0 ↦ 1

0 ↦ 1

0 ↦ 0 1 ↦ ("𝚖", "𝟷")

(b) ExprLow representation of the GCD
loop body.

Figure 6. Dataflow implementation of the loop body of a
GCD operation, represented as both ExprHigh and Expr-
Low.

in section 4.5, when we describe its semantics. However,
by using these global names associated with each port, we
can define the same fork and modulo graph in ExprLow,
shown in figure 6b. Formally, this can be described using the
following grammar.

𝐼 ≜ Nat | Str × Str (port name)
𝑃 ≜ (𝐼 ↦ 𝐼 ) × (𝐼 ↦ 𝐼 ) (port maps)
𝐶L ≜ 𝑃 × Str (ExprLow component)

Components can then be represented visually as in figure 6b.
Next, ExprLow is defined inductively as follows:

ExprLow ≜ 𝐶L (base)
| ExprLow⊗ ExprLow (product)
| connect(𝐼 , 𝐼 , ExprLow) (connect)

The base of the expression represents a component, which
can be combined using the product or connect constructor.

4.2 Rewriting on ExprLow
We can then define a simple rewriting function recursively
on ExprLow by relying on simple equality to find an lhs 𝑒lhs
in the expression and replace it by 𝑒rhs in 𝑒: 𝑒[𝑒lhs ∶= 𝑒rhs].

• 𝑒lhs[𝑒lhs ∶= 𝑒rhs] ≜ 𝑒rhs
• (𝑒1 ⊗ 𝑒2)[𝑒lhs ∶= 𝑒rhs] ≜

𝑒1[𝑒lhs ∶= 𝑒rhs] ⊗ 𝑒2[𝑒lhs ∶= 𝑒rhs]
• (connect(𝑜, 𝑖, 𝑒))[𝑒lhs ∶= 𝑒rhs] ≜

connect(𝑜, 𝑖, 𝑒[𝑒lhs ∶= 𝑒rhs])
• 𝑐[𝑒lhs ∶= 𝑒rhs] ≜ 𝑐

This rewriting function is simple to express and to reason
about. However, it is inflexible, as subgraphs can only be
matched syntactically. Instead, assuming we know which
subgraph nodes we want to replace, we define ways to mod-
ify expressions locally so the subgraph in 𝑒 matches 𝑒lhs. For
example, we prove the correctness of moving base compo-
nents over products and connections, and use these trans-
formations to isolate the subgraph that is to be replaced in a
ExprLow expression. When defining the correctness theo-
rem over ExprHigh, these transformations have to be taken
into account.

4.3 Semantics of components
This section describes the semantics of ExprLow, followed
by a description of the notion of refinement with which these
semantics are compatible.

We call nodes in these graphs components. 𝜀 is a mapping
from component types to semantics objects ℳ. ℳ gives
semantics to components by defining relations describing
how inputs are consumed, how outputs are emitted, and
potential internal transitions of the component. We name
such a semantic object ℳ a module.

For example, let’s assume that we have functions called
enq𝑛 to add an element to the front of the 𝑛th list (leaving
other lists unchanged), deq𝑛 to remove an element from the
end of the 𝑛th list (leaving other lists unchanged) and first𝑛
to check the last element of the 𝑛th list. We can then define
all the relations necessary to define the semantics object ℳ
– a module – for a fork component using the following three
relations.

fork.in0(𝑙, 𝑒, 𝑙′) ≜ 𝑙′ = enq1(enq2(𝑙, 𝑒), 𝑒)
fork.out0(𝑙, 𝑒, 𝑙′) ≜ 𝑒 = first1(𝑙) ∧ 𝑙

′ = deq1(𝑙)
fork.out1(𝑙, 𝑒, 𝑙′) ≜ 𝑒 = first2(𝑙) ∧ 𝑙

′ = deq2(𝑙)

Each relation is relating 𝑙, 𝑒 and 𝑙′, where 𝑙 and 𝑙′ correspond
to the input and output state of the transition relation and
the element 𝑒 corresponds to the input for input relations
and to the output for output relations. In these examples,
both 𝑙 and 𝑙′ – corresponding to the state of the component
before and after a transition – are pairs of lists. The fork.in0
relation processes a new input 𝑒 by relating the new state 𝑙′
to the old state 𝑙 with 𝑒 enqueued to both lists in the pair. The
fork.out0 relation emits the last element in the old state 𝑙
and removes it to define the new state 𝑙′.

We can also define the relation necessary to define the
module for the modulo operator in a similar fashion, where
the state also comprises two queues.

mod.in0(𝑙, 𝑒, 𝑙′) ≜ 𝑙′ = enq1(𝑙, 𝑒)
mod.in1(𝑙, 𝑒, 𝑙′) ≜ 𝑙′ = enq2(𝑙, 𝑒)
mod.out0(𝑙, 𝑒, 𝑙′) ≜ 𝑒 = first1(𝑙) % first2(𝑙)

∧ 𝑙′ = deq1(deq2(𝑙))

Here, the modulo operation is only applied in the output
transition, when both lists have at least one element.

We can then finally define the modules for the fork and
modulo components, and define an environment in which
we can denote circuits that refer to these components.

A module ℳ is composed of: a map from identifiers to
input transitions, a map from identifiers to output transitions,
a collection of internal transitions which do not produce
or consume an external value, and finally an initial state.
For example, the modules for the fork component would be
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ℛi(𝑆) ⊆ 𝑆 × 𝑆 (internal transition)
ℛe(𝑆, 𝑇 ) ⊆ 𝑆 × 𝑇 × 𝑆 (external transition)
ℳ(𝑆) ≜ (𝐼 ↦ ∑𝑇 ℛe(𝑆, 𝑇 )) (module inputs)

× (𝐼 ↦ ∑𝑇 ℛe(𝑆, 𝑇 )) (module outputs)
× 𝒫(ℛi(𝑆)) (internal transition)
× 𝒫(𝑆) (initial state)

𝜀 ∈ Env ≜ Str ↦ ∑𝑆 ℳ(𝑆) (environment)

Figure 7. Formal definition of a module and its environment.

written as (similarly for the mod component):

ℳfork ≜ ({ 0 ↦ fork.in0) },
{ 0 ↦ fork.out0; 1 ↦ fork.out1 },
∅, { ([], []) })

In this case, all input and output transitions emit a value
of the same type (an integer). However, we need heteroge-
neous maps and sets to store relations with different input,
internal state and output types. In practice, this is done by
parameterizing the input and output type by a dependent
type inside of a dependent pair. We summarize in figure 7 the
formal definition of a module and the environment, giving
the types of the objects involved. 𝑆 denotes the (dependent)
type of the internal state of the component, while 𝑇 denotes
the (dependent) types of the input/output element of each
transition. Finally, we can define an environment 𝜀 for these
components: 𝜀 ≜ { "Fork" ↦ ℳfork; "%" ↦ ℳmod }.

4.4 Refinement of graphs and verified rewrites
We mentioned previously that behavior of a graph is based
on traces of inputs and outputs. However, more precisely
we are using a weaker notion of behavior inclusion, namely
refinement between twomodules𝑚1 and𝑚2, written as𝑚1 ⊑
𝑚2, which states the existence of a weak simulation relation
(𝜑) relating states in𝑚1 and𝑚2, such that a certain simulation
diagram between transitions holds, detailed below. We prove
that refinement implies the trace-based notion of behavior.
More precisely, refinement is defined for each individual part
of a module, and ensures that inputs, outputs and internal
transitions refine each other.

Definition 4.1 (Input transition refinement). Refinement
between the input transitions of two modules 𝑚 and 𝑚′ for
port 𝑖 can be defined using the simulation diagram below: if
two state 𝑠 and 𝑡 are related by 𝜑(𝑠, 𝑡), and there is an input
transition in 𝑚.in at 𝑖 which transitions from 𝑠 to 𝑠′, then
there must exist a resulting state 𝑡′, an input transition at 𝑖
in 𝑚′.in, and a set of internal transition executions in 𝑚′.int
which transition from 𝑡 to 𝑡′, such that 𝜑(𝑠′, 𝑡′). This is also
depicted by the simulation diagram below.

𝑠

𝑠′

𝑡

∃𝑡′

𝜑

𝜑

𝑚.in[𝑖] 𝑣
𝑚′.in[𝑖]𝑣

𝑚′.int
∗

𝑚.in ⊑i𝜑 𝑚′.in ≜

Refinement for output transitions 𝑚.out ⊑o𝜑 𝑚′.out is de-
fined in a similar way, except that the internal steps have to
be performed before the output transition. The asymmetry
between these definitions is due to the way connections are
formed, which will be shown in section 4.5. In short, forming
a connection between an output transition and an input tran-
sition removes the possibility of performing internal steps
in between executing the output transition and executing
the input transition. Therefore, to prove that forming con-
nections is sound according to our definition of refinement,
we forbid internal transitions from executing after output
transitions and before input transitions.

Definition 4.2 (Output transition refinement). Refinement
between the output transitions of two modules 𝑚 and 𝑚′ for
port 𝑜:

𝑠

𝑠′

𝑡

∃𝑡′

𝜑

𝜑

𝑚.out[𝑜] 𝑣
𝑚′.out[𝑜]𝑣

𝑚′.int
∗𝑚.out ⊑o𝜑 𝑚′.out ≜

Finally, refinement of internal steps𝑚.int ⊑int𝜑 𝑚′.int is de-
fined using a similar diagram without any externally visible
transitions.

Definition 4.3 (Internal transition refinement). Refinement
between the internal transitions of two modules 𝑚 and 𝑚′:

𝑠

𝑠′

𝑡

∃𝑡′

𝜑

𝜑

𝑚.int 𝑚′.int
∗

𝑚.int ⊑int𝜑 𝑚′.int ≜

Definition 4.4 (Refinement with simulation relation 𝜑).

𝑚 ⊑𝜑 𝑚′ ≜ 𝑚.in ⊑i𝜑 𝑚′.in ∧ 𝑚.out ⊑o𝜑 𝑚′.out
∧ 𝑚.int ⊑int𝜑 𝑚′.int
∧ (∀𝑖.𝑚.init(𝑖) → ∃𝑠.𝑚′.init(𝑠) ∧ 𝜑(𝑖, 𝑠))

Definition 4.5 (Refinement). The top-level definition of re-
finement is therefore given as: 𝑚 ⊑ 𝑚′ ≜ ∃𝜑.𝑚 ⊑𝜑 𝑚′.

4.5 Denoting ExprLow to modules
We now want to denote the ExprLow graph definition from
figure 6b into a module ℳ, to give a semantics to the full
graph. We start with denoting base components, such as
f and m in figure 6b. We denote ExprLow expression 𝑒 in
environment 𝜀 as J𝑒K𝜀, producing a module object ∑𝑆 ℳ(𝑆).



Graphiti: Formally Verified Out-of-Order Execution in Dataflow Circuits ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Denoting the "Fork" component from figure 6b can be
done as follows, assuming we have a rename function which
can rename input and output port names given a map from
global to local names:
s

"Fork"
0 ↦ ("𝚏", "𝟶") 1 ↦ 0

0 ↦ 1
{

𝜀
≜ rename ( "Fork"

0 ↦ ("𝚏", "𝟶") 1 ↦ 0

0 ↦ 1
, 𝜀["Fork"])

The module for the component is retrieved from the envi-
ronment, and the input and output ports of the module are
renamed according to the local name map for inputs and
outputs included in the module definition.

Denoting a product of two ExprLow graphs is simply
done by creating a module whose state is the product of the
states of both ExprLow modules, and whose input, output
and internal transitions are a concatenation of the transitions
of each underlying module. For example, in the case where
modules ℳmod and ℳfork are combined using a product in
ExprLow, the new state that each transition needs to act
on is now a product of the two lists from the ℳmod module
and the product of the two lists from the ℳfork module.
The transitions then first have to be lifted from acting on
a product of two lists to act on a product of four lists. For
example, the original fork.in0 transition would be updated
to the following definition, where the input is now enqueued
to the third and fourth list in the state instead of the first and
second.

modfork.out1(𝑙, 𝑒, 𝑙′) ≜ ↾fork.out0
≜ 𝑙′ = enq3(enq4(𝑙, 𝑒), 𝑒)

In general we can define ↿⋅ and ↾⋅, whichwill lift a transition
acting on state 𝑆 to act on states 𝑆 ×𝑆′ and 𝑆′ ×𝑆 respectively,
where 𝑆′ is arbitrary. Merging of the transitions can then be
defined using the union operator below:

⋅ ⊎ ⋅ ∈ ℳ(𝑆) → ℳ(𝑆′) → ℳ(𝑆 × 𝑆′)
𝑚1 ⊎ 𝑚2 ≜ (↿𝑚1.in ∪ ↾𝑚2.in,

↿𝑚1.out ∪ ↾𝑚2.out,
↿𝑚1.int ∪ ↾𝑚2.int,
𝜆 (𝑥, 𝑦).𝑚1.init(𝑥) ∧ 𝑚2.init(𝑦))

This union operator is a module combinator and takes two
modules and produces a new module that includes the be-
haviors of the two previous modules with a larger state.
Therefore the denotation of the ExprLow product can be
defined as: J𝑒1 ⊗ 𝑒2K𝜀 ≜ J𝑒1K𝜀 ⊎ J𝑒2K𝜀. Finally, we can also de-
fine how we denote connections in ExprLow. For example,
connecting the output ("f", "0") with the input ("m", "1")
can be done by removing transitions associated with these
outputs and inputs and creating an internal transition that
propagates the output from the first transition to the input of
the next transition. The semantics associated with ("f", "0")
and ("m", "1") are modfork.out1 defined above and ↿mod.in1.
Connecting them would produce the following internal tran-
sition, which does not emit or consume data anymore, and

hence does not have an 𝑒 parameter:

modforkconn(𝑙, 𝑙′) ≜
∃𝑒 𝑙i𝑛𝑡. modfork.out1(𝑙, 𝑒, 𝑙i𝑛𝑡) ∧ ↿mod.in1(𝑙i𝑛𝑡, 𝑒, 𝑙′)

This can also be defined as a general combinator for modules,
where the input and output transitions are removed from
the compound module and are added as joined together in
an internal transition 𝑟:
⋅[⋅ ⇝ ⋅] ∈ ℳ(𝑆) → 𝐼 → 𝐼 → ℳ(𝑆)
𝑚[𝑜 ⇝ 𝑖] ≜ (𝑚.in − {𝑖}, 𝑚.out − {𝑜}, 𝑚.int ++ [𝑟], 𝑚.init)

where
𝑟(𝑠, 𝑠′) iff ∃𝑣 𝑠″. 𝑚.out[𝑜](𝑠, 𝑣 , 𝑠″)

∧ 𝑚.in[𝑖](𝑠″, 𝑣 , 𝑠′)
Note that there are no internal transitions which are allowed
to fire between executing 𝑚.out[𝑜](𝑠, 𝑣 , 𝑠″), the output tran-
sition, and 𝑚.in[𝑖](𝑠″, 𝑣 , 𝑠′), the input transition, leading to
the asymmetry in the definition of refinement discussed ear-
lier.

Finally, the denotation of a connection can therefore be
described as: Jconnect(𝑜, 𝑖, 𝑒))K𝜀 ≜ J𝑒K𝜀 [𝑜 ⇝ 𝑖].

4.6 Correctness of the rewriting function
We then show that some core properties hold about refine-
ment, for example that it is a preorder, giving us transitivity
and reflexivity. Additionally, we show that refinement is pre-
served over connections and product. These properties are
used to prove correctness of all transformations on ExprLow
expressions by induction on the structure of the expression.
For example, the correctness of the rewriting function on an
expression is verified in this way.

Theorem 4.6 (Replacement refines). If the graph correspond-
ing to the right-hand side of the rewrite 𝑒rhs refines the graph
corresponding to the left-hand side of the rewrite 𝑒lhs, then a
graph where we applied the rewrite 𝑒[𝑒lhs ∶= 𝑒rhs] refines the
original graph 𝑒.

J𝑒rhsK𝜀 ⊑ J𝑒lhsK𝜀 → J𝑒[𝑒lhs ∶= 𝑒rhs]K𝜀 ⊑ J𝑒K𝜀
There are two versions of this theorem, one operating on
ExprLow, and the top-level rewriting correctness theorem
operating on ExprHigh.

5 Proof of the parametric loop rewrite
This section describes the refinement proof for a particu-
lar fairly sophisticated rewrite: the core out-of-order loop
rewrite that applies to arbitrary loop bodies, which is param-
eterized by the function 𝑓 ∈ 𝑇 → 𝑇 × Bool, and is shown in
figure 3d. The function 𝑓 takes values of type 𝑇 and returns
values of type 𝑇 in addition to a Boolean, which determines if
the loop should terminate or not. We want to show that the
out-of-order loop execution refines a sequential loop execu-
tion. This would imply that it is safe to rewrite the sequential
loop into the out-of-order loop. We will use ℐ ∈ ℳ(𝐼 ) for
the module with a state 𝐼 which represents the right-hand
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side (out-of-order) loop and 𝒮 ∈ ℳ(𝑆) for the module with
state 𝑆 which represents the left-hand side (sequential) loop
in the rewrite shown in figure 3d.

The top-level theorem we are interested in proving is
ℐ ⊑ 𝒮, which states that the out-of-order loop ℐ refines
the sequential loop 𝒮. To prove this theorem, we have to find
a relation 𝜑 ⊆ 𝐼 × 𝑆, such that the simulation diagrams in
section 4.4 hold. The key idea in this proof is that to simulate
the out-of-order loop with the sequential loop, it suffices to
know that every computation in the out-of-order loop (ℐ) is
contained in the input queue of the sequential loop (𝒮), i.e.
the queue associate with input 𝑖 in the diagram. Then, when
an output transition is called on ℐ, we execute the entire
loop with the oldest input of the input queue until it finishes
iterating, followed by executing the output transition of 𝒮.

Fortunately, we can define the output value 𝑜 for an input
𝑖 for both loops quite simply. We define 𝑜 = 𝑓 𝑛(𝑖) to mean
applying a function 𝑓 to 𝑖 𝑛 times. If it returned an output
value 𝑜 where the associated Boolean is false, this terminates
the loop with result 𝑜, and it states that input 𝑖 is terminating.
Of course, a loop might not be terminating if the function 𝑓
never returns a value where the associated Boolean is false,
meaning the loop execution would diverge. Coming back to
the refinement, we can therefore prove it as long as we know
that: (1) if we have an input 𝑖, such that ∃𝑜 𝑛. (𝑜, false) =
𝑓 𝑛(𝑖), then 𝒮 must terminate with value 𝑜, and (2) if we
output a value 𝑜 in ℐ, then ∃𝑖 𝑛. (𝑜, false) = 𝑓 𝑛(𝑖), such that
𝑖 is the oldest input that is currently being processed. We
will therefore prove these two statements in section 5.1 and
lemma 5.2 respectively.

5.1 Executing the sequential loop
We first need to show that the sequential loop actually im-
plements the multiple application of function 𝑓 correctly, i.e.
that if an input terminates, then the sequential loop circuit
will take input 𝑖 and produce the value returned by 𝑓 𝑛(𝑖). To
do this, we define a new relation 𝜔 ⊆ 𝑆 which states that all
components in 𝒮 are empty except for the input queue. We
will use states 𝑠start, 𝑠inter, 𝑠end ∈ 𝑆 in the following sections
to describe states of 𝒮.

Lemma 5.1 (Flushing invariant). For any state 𝑠start of 𝒮, if
the property 𝜔(𝑠start) holds and the next input 𝑖 to the loop
terminates, then there exists a state 𝑠end that is reachable
from 𝑠start by applying internal transitions of 𝒮, followed by
applying an output transition which will produce the value
𝑓 𝑛(𝑖).

∀𝑠start 𝑖 𝑜 𝑛. 𝜔(𝑠start) ∧ deq(𝑠start.inp) = 𝑖 ∧ 𝑜 = 𝑓 𝑛(𝑖) →

∃𝑠inter 𝑠end. 𝑠start ⟶∗
𝒮.int

𝑠inter ∧ 𝑠inter
𝑜

⟶
𝒮.out

𝑠end ∧ 𝜔(𝑠end)

Proof sketch. We generalize the statement, and instead of
considering 𝑖, we consider 𝑓 𝑚(𝑖), where that value is already
in the loop. The proof is then performed by induction on the

number of loop iterations 𝑚, such that 𝑚 < 𝑛, and remem-
bering that the current value in the loop is 𝑓 𝑚(𝑖). For the
inductive case:

• If𝑚+1 < 𝑛, we execute a single loop iteration symbol-
ically by applying internal rules of 𝒮 until the value
𝑓 𝑚+1(𝑖) is back at the top of the loop and then apply
the inductive hypothesis.

• If 𝑚 + 1 = 𝑛, then we know that function 𝑓 returned a
Boolean false, and we can terminate the loop.

�

5.2 Output corresponds to oldest input in
out-of-order loop

Now that we know that the sequential loop produces the
values that we expect, we need to show that the out-of-order
loop maintains certain properties during its execution so
that we can link the state of ℐ with the state of 𝒮. In the
following we will use 𝑖start, 𝑖end ∈ 𝐼.

We define a relation 𝜓 ⊆ 𝐼 comprising three main aspects
of the state of module ℐ. No-duplication guarantees that for
each input 𝑖 the tag that ℐ assigns to it is unique, and that
each computed value associated with 𝑖 appears at most once
in the entire state 𝐼. Next, we define another property called
in-order, which maintains that the tags which were allocated
in the Tagger/Untagger component remain in the order in
which they were accepted into the loop, and that the tags are
always linked with the correct value. Next, we define 𝜃 ∈ 𝐼 as
being the state associate with the circuit inside of the tagger
and untagger region of ℐ. Thus, each value can be either be
an input 𝑖, be in the loop body 𝜃 or be an output 𝑜. Finally,
the iterate property tracks how many iterations 𝑛 of 𝑓 are
needed until the final output value 𝑜 is produced (or does
not exist if the input diverges). For example, if a value 𝑣 ∈ 𝜃
associated with 𝑓 𝑛−1(𝑖) is in the Merge component, when
𝑓 (𝑣) will reach the Split component, 𝑓 (𝑣) can be untagged,
because 𝑓 𝑛(𝑖) = (𝑜, false), becoming a final output 𝑜.

Lemma 5.2 (State invariant). For all possible states 𝑖start of
ℐ and all possible single steps 𝑖start ⟶

ℐ.int
𝑖end from 𝑖start to

𝑖end if 𝜓 holds for 𝑖start, it will also hold for 𝑖end.

∀𝑖start 𝑖end. 𝑖start ⟶ℐ.int
𝑖end ∧ 𝜓(𝑖start) → 𝜓(𝑖end)

Proof sketch. The proof considers all possible internal transi-
tions of ℐ and checks whether 𝜓 is preserved, and therefore
is an invariant. �

Once we have shown that 𝜓 is preserved over internal
steps, this gives the property that each value that is comput-
ing in the loop corresponds to an input that was fed to to it,
and that the tags remain in order. We can now develop the
properties we need to link it to the specification.
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5.3 Refinement between ℐ and 𝒮
The final theorem is the refinement between ℐ and 𝒮. We
first need to define 𝜑(𝑖start, 𝑠start) ≜ 𝜓(𝑖start) ∧ 𝜔(𝑠start) ∧
match(𝑖start, 𝑠start), where the match function maps all the
values that are currently in 𝑖start to the input queue of 𝑠start in
the order in which they were received. Given two states, 𝑖start
of ℐ and 𝑠start one of 𝒮, the relation 𝜑 is satisfied if 𝜓(𝑖start)
and 𝜔(𝑠start) hold, and if the values in the ℐ can be mapped
to the input queue in 𝒮.

Theorem 5.3 (Refinement between ℐ and 𝒮). ℐ ⊑𝜑 𝒮

Proof sketch. The proof is by induction on the step function
of ℐ, which generates three different cases. In each case, we
prove that 𝜑 is preserved.

Input transition This implies that an input 𝑖 is added to the
state 𝑖start of ℐ, and it is also added to the specification.

Output transition This implies that an output 𝑜 is emitted
from 𝑖start. For the specification, due to 𝜓(𝑖start), we
know that the output satisfies (𝑜, false) = 𝑓 𝑛(𝑖), where
𝑖 is the oldest input in the input queue of 𝒮. We then
apply lemma 5.1 to execute the specification and emit
the same output in 𝒮.

Internal transition In this case we know that 𝜓 is pre-
served in ℐ. We also do not perform any transitions
in 𝒮, so 𝜔 is also preserved. Finally, no values were
emitted, so match must also still hold.

�

6 Evaluation
In this section, we demonstrate the practical effectiveness of
our rewrites presented in section 3 and show that our frame-
work can produce verified circuits whose quality matches
that of the unverified circuits produced by Elakhras et al. [22],
which we will call DF-OoO. We also compare against the
in-order circuits generated by Elakhras et al. [21], which we
will call DF-IO in the benchmarks. Finally, we also compare
against Vericert [31, 32], a verified but statically scheduling
HLS tool. Vericert therefore generates drastically different
kinds of circuits when compared to Graphiti, however, it
being the only other verified HLS transformation makes it
an interesting comparison point. In practice, dynamic HLS
tools and statically scheduling HLS tools are complementary
to each other. Statically scheduling HLS tools perform well
with predictable memory accesses, generating more area effi-
cient hardware, whereas dynamic HLS tools produce circuits
with higher throughput at the cost of area.

6.1 Methodology
In Lean 4 we implemented the tool flow shown in figure 1,
and evaluated it using the benchmarks used by DF-OoO. We

took the input dot graphs from Dynamatic [39], an open-
source C-to-dataflow circuits tool based on LLVM [64], im-
plementing the fast token delivery [21] dataflow circuit gen-
eration strategy that produces untagged circuits, prior to
buffer placement. We applied the rewrites of figure 3 on the
input dot graphs, transforming the same loops as those trans-
formed by DF-OoO, and exported the results to dot graphs
that we passed back to Dynamatic for buffer placement and
VHDL netlist generation. We used the modified version of
Dynamatic’s buffer placement strategy [40], as explained
by Elakhras et al., to prevent deadlocks. We employed the
same number of tags specified by Elakhras et al. for each
benchmark, and used the rest of the flow unmodified.

We synthesized the generated VHDL netlists using Vi-
vado [67] with a clock-period constraint of 4 ns, targeting
a Kintex-7 FPGA. We simulated the designs with Model-
Sim [50] to obtain cycle count. We then measure the clock
period (CP) and the resource usage (i.e., LUT, FF, and DSP
counts) reported from Vivado after placement and routing.
Note that all three tools use the same component implemen-
tations to make the results more comparable.

The benchmarks we evaluate use floating point opera-
tions, which Vericert does not support. Therefore, to eval-
uate Vericert we extended the scheduler and the back-end
with floating-point operation support, using the same float-
ing point units as the other tools. Furthermore, during the
development of Graphiti, we found better timing character-
istics for tagging components, improving the clock period
for most benchmarks. To make the comparison more fair, we
manually annotated the original DF-OoO dot graphs with
the same timing characteristics.

About the benchmarks.We use the same benchmarks as
those which were evaluated by Elakhras et al., because these
benchmarks exhibit properties that make them especially
difficult to synthesise optimally using traditional HLS tech-
niques. Firstly, there are benchmarks that inherently have
a high initiation interval (II) for the inner loop due to long-
latency loop-carried dependencies, whereas the outer loop
has independent iterations. Most of these benchmarks come
from the PolyBench/C suite [53] (bicg, mvt and gemm). An-
other benchmark is a floating-point matrix-vector multipli-
cation (matvec). Next, there are benchmarks with multiple
conditional paths within the inner loop which also limit the
II of the loop. These comprise two versions of gsum [12],
one inherently sequential version in gsum-singlewith loop-
carried dependencies in the outer loop, and one where there
are multiple independent invocations of the gsum kernel in
gsum-many. Finally, img-avg is a benchmark that we omit
in this evaluation, as the out-of-order optimization being
performed for this benchmark is by reordering branch body
executions instead of loop iterations, which is not a rewrite
that we implemented.
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Figure 8. Graphs showing the relative performance of Graphiti, as well as prior work [21] which we will call DF-IO compared
to prior work [22] which we will call DF-OoO.

6.2 Results of our transformed dataflow circuits
Figure 8 records our results (Graphiti) compared to the repro-
duced results of DF-IO [21], updated results of DF-OoO [22]
and Vericert [31, 32]. More detailed results are shown in ta-
bles 2 and 3. We show the effectiveness of our rewrites by
calculating the factor of reduction thatGraphiti circuits have
on the execution time compared to the untagged circuits,
and show how it differs from DF-OoO.

Compared to the untagged circuits, both Graphiti cir-
cuits and the ones produced by DF-OoO report factors of
improvement in the cycle count, and consequently in the
execution time; this is due to an increase in loop through-
put by allowing multiple outer loop iterations to execute
simultaneously. In some cases, our circuits report a slightly
higher cycle count than DF-OoO; this is due to our rewrites
imposing extra synchronization as a result of rewrites which
combine Mux and Branchcomponents, synchronizing their
data paths. This synchronization is not inherently neces-
sary for correctness, however, a more general, asynchronous,
Tagger/Untagger component would be needed to lift this
limitation. The approach by DF-OoO is less synchronized
as it leaves the Muxes and Branches uncombined, and only
synchronizes the differentMuxes by providing common con-
ditions. Nevertheless, we still have significant improvements
in comparison to the untagged circuits. The exception is
gsum-single which does not benefit from this optimization,
so the result is expected. Vericert, as expected due to the ir-
regular loops present in benchmarks, has worse cycle count
throughout compared to DF-IO, but the designs can achieve
a better max clock period. The resulting execution time of

Graphiti is around 5.8× that of Vericert. One exception is
gsum-many, where Vericert is on par with DF-IO, how-
ever, this is due to the data provided by the testbench for
the example, which happens to fit the static schedule well.
Changing the data will affect Vericert a lot more than the
dataflow circuits.

Our circuits and the ones produced by DF-OoO consis-
tently increase resources (look-up tables (LUTs) and flip-flops
(FFs)) and worsen the critical path when compared to DF-
IO due to the additional components managing the tagging
and reordering, and the increased buffer slots to accommo-
date the increased parallelism, as noted in the discussion of
results of DF-OoO. This is especially obvious for matvec,
where tagged circuits use nearly 6× the number of FFs, due
to the allocation of 50 tags. Here Vericert is the clear winner,
with consistently better area and critical path. This is due
to the fine-grained resource sharing it can perform, using
less floating-point units, and also not needing handshaking
circuitry due to the static schedule. In general, it’s quite posi-
tive that even with additional synchronization in the circuits
produced by Graphiti, this does not seem to affect critical
path or area compared to DF-OoO.

Overall, our framework produces circuits that introduce
out-of-order loop executions to untagged dataflow circuits
using a verified loop rewrite, as-well-as a verified rewriting
engine, in addition to simpler but yet unverified rewrites. It
achieves a significant improvement in the circuit’s execution
time, in doing so. Besides, it achieves a comparable quality
to that of the unverified circuits.
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Dynamatic bug. For the bicg benchmark Graphiti per-
forms the same as DF-IO, instead of DF-OoO. When formal-
ising the rewrites, we could not justify doing the transfor-
mation for the bicg benchmark, as it had a store operation
in the loop body, which led to an inconsistent memory state.
This allowed us to identify a bug in the original compilation
scheme that was turning loops out-of-order too aggressively.

6.3 Lean 4 development
In total, the size of the development is 15806 lines of Lean 4
code, taking around one person-year of time to write. How-
ever, only 1600 of those lines were needed to verify the loop
rewrite. As the rewriting algorithm is written in Lean 4, it
can be extracted to C, producing a command-line program
that interfaces with the Dynamatic dot graph format. The
rewriting algorithm is practical and can handle a thousand
rewrites on graphs with a couple of hundred nodes in a rea-
sonable amount of time. For example, optimizing matvec
(90 nodes) required 1650 rewrites and took 9.76s, while the
largest graph, gemm (180 nodes), required 4416 rewrites
and took 81.49s. The main bottleneck is the sheer number
of rewrites that are applied, which are mainly present to
produce the Pure component.

One particular difficulty we encountered is linking a para-
metric loop rewrite refinement shown in section 5 with the
concrete rewriting function correctness proof shown in the-
orem 4.6. This is because the environment in which this
loop rewrite is interpreted is parameterized, i.e. when veri-
fying the loop rewrite we are verifying it relative to a family
of environments parameterized by 𝑓 and the data type 𝑇.
When applying this parameterized rewrite to a concrete in-
put graph with a concrete environment, the rewrite needs to
be specialized based on the subgraph that will be rewritten.
The main issue is that this concrete environment cannot be
equivalent to the parameterized environment used to prove
the loop rewrite correct. For example, a "Fork" component
denoted in the concrete environment for a specific graph
can only have one specific interpretation, i.e. the denoted
ℳfork may refer to a fork of Boolean values, but cannot at
the same time implement a fork for integers. In the rewrite,
however, the environment containing the ℳfork module can
be parameterized by an arbitrary type 𝑇, making it possible
for the "Fork" component to denote a module which forks
values of any type 𝑇.

To unify these two types of environments, we move this
parametricity into the environment. We do not expose the in-
ternal type on which the module associated with the "Fork"
component operates. This means that the module existen-
tially quantifies over the type of its state when it is defined
in the environment. For example, when denoting this "Fork"
component in this environment, one therefore cannot as-
sume anything about the type of its state, or the type of the
input and output ports. To be able to meaningfully reason
about the loop rewrite, one does have to be able to know the

type of each component though. We solve this by adding a
notion of well typed graphs, which simply states that connec-
tions have to have the same type. This allows us to deduce
the types of the whole graph with respects to the new, more
general environment that was introduced.
Limitations. To demonstrate the usefulness and expres-

sivity of the framework, we have verified the loop out-of-
order rewrite described in section 5, as well as the rewrite
function itself. However, we have not provided a proof of
refinement for most of the minor rewrites, like those shown
in figures 3a to 3c.

7 Related Work
Formalizations of dataflow circuits in theorem provers.
Recent work [45] presented Cigr and Cilan, two languages
formalized in Rocq, to reason about dataflow graphs. They
have extensively validated their semantics against Dyna-
matic and have proven interesting meta-properties about
their semantics. These meta-properties focus on determinate
circuits or on safe use of nondeterministic components. Cigr
and Cilan have small-step operational semantics, which are
well-adapted to providing precise semantics, however, it is
unclear whether the semantics exhibits enough modularity
to implement a rewriting engine. Additionally, the work does
not yet present a notion of equivalence between two graphs,
which would be necessary to reason about transformations.

Vélus [4] is a verified compiler for Lustre [28], a synchro-
nous dataflow language. Additionally, Paulin-Mohring [52]
formalized a model of Kahn process networks [42, 43]. The
main limitation of these two works are that they only model
deterministic systems, so cannot reason about local nonde-
terminism and out-of-order execution.

Dataflow circuit optimizations. Many research efforts
explored generating dataflow circuits from imperative code [6,
27, 37, 44]; this includes Dynamatic [21, 37], the source of
the dataflow circuits that we used in our evaluation. Prior
work aims to increase the parallelism of the circuit through
queue sizing [40, 56], building memory interfaces for irregu-
lar parallelism [7, 23, 36], advancing computations via spec-
ulation [38], and increasing spatial parallelism between in-
dependent circuit constructs [14, 21, 47, 68].

Previous work [29, 49] employed loop-specific compiler
transformations to execute inner loops of a loop nest in
parallel and reorder at the loop exit. Elakhras et al. [22]
presented a methodology to enable out-of-order execution
in generic dataflow circuit structures, including loops, and
its loop out-of-order transformation inspired our rewrites.
Yet, none of these works formally verify the correctness of
their transformations or employ a rewrite-based approach.

Verification of dataflow circuit optimizations. Other
work on loop-specific out-of-order execution optimizations
implement a checker for this transformation in Boogie [46],
an intermediate verification language [13, 15]. The program
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Table 2. Cycle count, clock period and execution time results.

Cycle count Clock period (ns) Execution time (ns)
benchmark DF-IO DF-OoO Graphiti Vericert DF-IO DF-OoO Graphiti Vericert DF-IO DF-OoO Graphiti Vericert

bicg 7936 1000 7936 44557 6.43 11.27 6.43 4.807 51028 11270 51028 214185
gemm 68825 8278 8338 252013 6.361 8.631 12.439 5.059 437796 71447 103716 1274934
gsum-many 68523 36537 34363 118096 7.57 8.052 7.388 5.127 518719 294196 253874 605478
gsum-single 6703 9234 9436 18798 6.026 8.937 8.421 5.127 40392 82524 79461 96377
matvec 7936 919. 993 25447 5.589 8.628 7.114 4.805 44354 7929 7064 122273
mvt 7940 2044 2002 46538 6.101 8.31 7.45 4.805 48442 16986 14915 223615

geomean 15842 4168 5911 55593 6.32 8.91 8.01 4.95 100095 37160 47335 275336

Table 3. Results relating to the area.

LUT count FF count DSP count
benchmark DF-IO DF-OoO Graphiti Vericert DF-IO DF-OoO Graphiti Vericert DF-IO DF-OoO Graphiti Vericert

bicg 2051 3229 2051 838 2182 2737 2182 1302 10 10 10 5
gemm 3248 5564 6282 940 2709 3880 4908 1484 11 11 11 5
gsum-many 3028 3867 4438 1151 3319 3855 4546 1381 22 22 22 5
gsum-single 2648 2541 3862 1042 3110 3101 4283 1342 22 22 22 5
matvec 1400 6027 6107 613 1282 6839 6680 1137 5 5 5 5
mvt 2980 5084 5656 936 2721 4028 5179 1386 10 10 10 5

geomean 2462 4190 4437 903 2443 3896 4396 1334 11.77 11.77 11.77 5

is translated into a Boogie representation which exhibits the
same memory operations as the original program, and it
can be used to find memory conflicts at a certain depth for
out-of-order execution. However, the approach is specialized
to this optimization and the resulting circuit is not modeled
or verified to be equivalent to the input circuit.

Recent work [24] presented ElasticMiter, a framework for
formally verifying the equivalence of dataflow circuits using
model checking [5, 18, 58], and used it to formally prove the
correctness of a set of rewrites that optimize the steering
logic in dataflow circuits. Yet, their approach is confined to
in-order execution and does not support tagging.

Finally, FlowCert [48] is a framework for translation vali-
dation between LLVM and the RipTide dataflow language
which targets a dataflow CGRA architecture. Again, this is
limited to in order dataflow circuits.

Verification of rule-based hardware languages. Verifi-
cation efforts on rule-based hardware languages like Blue-
spec [51] have explored notions of refinement reminiscent
of our own. These languages, while heavily influenced by
dataflow literature, depart from input/output connections by
using guarded atomic actions to compose an arbitrary num-
ber of hardware methods simultaneously. Related work [3,
17, 65] has proposed Rocq-mechanized semantics for this
type of languages, and defined notions of refinement (forms
of weak simulation) demonstrated to be useful by verifying
specific designs like processors, accelerators or cache designs.
These frameworks have not been used to describe or verify
the kind of compiler-level transformations we studied.

Verified rewrite frameworks. Lean-MLIR [2] is also a
rewrite framework, but focuses on software and peephole
rewrites which can be interpreted using arithmetic formulas.

8 Conclusions
In conclusion, we have developed Graphiti, a rewriting
framework for dataflow circuits formalized in Lean 4 and
general enough to reason about transformations introducing
out-of-order execution. We integrate the framework with
Dynamatic, an existing state-of-the-art dynamic HLS tool,
and show that we can optimize dataflow graphs in practice
on existing benchmarks. Graphiti also provides an environ-
ment to verify new rewrites, which can then be plugged into
the top-level rewriting loop to produce a verified top-level
transformation. As rewrite based optimizations are becom-
ing more popular [11], we hope to develop Graphiti further
to reason about more tricky transformations in existing tools.
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A Artifact appendix
A.1 Abstract
The main contribution of the paper is a verified rewriting
algorithm based on an abstract graph semantics, and an im-
plementation of the out-of-order optimization, together with
a verified loop rewrite. This artifact describes and documents
the Graphiti artifact, and show that the rewriting algorithm,
as well as the loop rewrite, have been fully verified with-
out admitting any additional axioms in the Lean 4 theorem
prover. Additionally, the artifact reproduces the results in
the evaluation section.

A.2 Artifact check-list (meta-information)
• Compilation: Lean v4.26.0-rc2, rustc 1.86.0 and uv 0.7.13
• Run-time environment: Docker image for experiments
• Howmuch disk space required (approximately)?: 45GB
for docker image

• How much time is needed to prepare workflow (ap-
proximately)?: 30 mins

• How much time is needed to complete experiments
(approximately)?: 1h30

• Publicly available?: yes
• Code licenses (if publicly available)?: Apache-2.0
• Archived (provide DOI)?: 10.5281/zenodo.18328388 [30]

A.3 Description
A.3.1 How to access. The code for the Graphiti rewriting
framework, as well as the loop rewrite proof can be found
on GitHub:
github.com/VCA-EPFL/graphiti/releases/tag/ASPLOS’26

A build of Graphiti, with a version of Dynamatic, is also
available as a Docker image:

https://zenodo.org/records/18328388

A.3.2 Software dependencies.
• Python 3.12
• docker
• Gurobi 13.0 (https://www.gurobi.com/)
• Vivado 2019.1 (or a more recent version)
• gnuplot

A.4 Installation
Download the Zenodo archive at https://zenodo.org/records/
18328388. Follow the README.pdf in the archive after hav-
ing installed the software dependencies described in appen-
dix A.3.2.

A.5 Evaluation and expected results
To reproduce the main results, assuming the software depen-
dencies are installed and the artifact has been downloaded:
$ bash run-all.sh

Follow the README.pdf for more detailed instructions re-
lated to the artifact.
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