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Abstract

Verifying cache coherence protocols is a notoriously difficult
problem. At the intersection between distributed protocol
and computer architecture, it has long served as a premier
target for formal methods. Current verification approaches
hinge on the challenging discovery of large global induc-
tive invariants. This paper introduces an alternative proof
strategy that tames the complexity through two main con-
tributions: protocol decomposition and a framework of local
invariants.

We prove the correctness of the standard MSI protocol
compositionally by independently verifying the simpler MI
and SI subprotocols and proving MSI behaves as their com-
bination. This decomposition revealed a useful insight: the
invariants necessary in these proofs can be established using
a small set of simple local invariants: invariants between a
single cache and the parent and memory, eliminating com-
plex global reasoning across children caches. We demon-
strate how our approach reduces the number of required
invariants from several dozens to hundreds in prior work
to a small, structured and manageable set, simplifying the
proof of correctness. The entire development is formalized
in Lean 4.
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1 Introduction

The correctness of cache coherence protocols is fundamen-
tal to the performance and reliability of modern multi-core
processors. A subtle bug in these protocols can lead to the
worst kind of bugs: silent data corruption. This makes these
protocols a prime target for formal verification.

The problem has been extensively studied over the past
thirty years, and existing verification techniques have suc-
cessfully verified representative protocols like MSI or MESI.
However a significant challenge is left: full proofs still require
heroic efforts. A primary bottleneck is the manual effort and
expertise required to discover the precise global inductive
invariants needed to prove correctness. These invariants are
composed of several dozens [Choi et al. 2022; Vijayaragha-
van 2016] to hundreds [Tan et al. 2025] (depending on the
expressivity of the logic in which they are written) of inter-
twined logical formulas. The invariants are typically slowly
iteratively discovered, a task hard for engineers to concep-
tualize and write, and out-of-reach for automatic tools to
synthesize in the general unbounded case.

These large invariants become especially difficult to main-
tain and update when facing the seemingly minor design
modifications that architects might want to explore: varia-
tions over the very precise MSI transitions used, small adjust-
ments in the underlying cache topology or the downgrade
policies, variations in the assumptions about the reordering
induced by the network-on-chip interconnect, the associa-
tivity of the caches etc. The problem becomes even more
major when architects decide to complexify the protocol,
going from MSI to MESI, MOSI, MOESI, requiring virtually
a complete proof overhaul.

This paper introduces a novel proof strategy that har-
nesses the proof complexity through two main insights: de-
composition of the MSI protocol into simpler protocols and
systematic simplification of the invariants.
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More precisely, for the first part, instead of reasoning
directly about the full MSI protocol, correctness is first es-
tablished for two foundational subprotocols: the MI and SI
protocols. Once these subprotocols are verified in isolation,
we prove that the MSI protocol behaves as the composition of
these two subprotocols. This modular approach significantly
reduces proof complexity. Verifying MI and SI independently
is simpler because they involve smaller state spaces, fewer
types of messages exchanged between caches and the central
memory, and a more limited set of possible configurations.

Addressing these smaller problems not only simplified the
overall proofs but also led us to study invariants for these
minimal protocols. In the process, we found simpler but still
complete inductive invariants. We realized we could make
the inductive invariants for the simple MI and SI protocol
to share the same structural pattern, despite the seemingly
distinct nature of the protocols, and that the MSI invariant
could be described exactly as a simple combination of these,
reducing the invariants to a size where they can fit on half
a page. This exploration led us to the definition of a more
general taxonomy of cache protocol invariants, providing a
systematic framework for reasoning and supporting invari-
ant crafting and reuse across different protocols.

Especially interesting, these new inductive invariants are
not global, as was the case for previous work, but are ex-
pressed fully locally. Our local invariants are defined with
respect to a single cache and the central memory, without re-
quiring explicit reasoning about interactions between signals
across different child caches. This perspective substantially
simplifies invariant discovery, because it is only necessary to
consider the interactions between that cache and the central
memory. These local invariants can then be applied to other
cache-memory subsystems, as the central memory is shared
and all caches exhibit identical behavior.

Finally, we observed that introducing a controlled degree
of nondeterminism and generalization into the protocol ver-
ified significantly eased some proofs while making the pro-
tocol more general, leading to proofs that are more reusable
across small design variations.

In summary, the main contributions of this paper are the
following:

+ Definition of an invariant taxonomy applicable to the
three studied protocols: MSI, MI, and SI and their vari-
ations (see section 3), where the inductive invariants
are all local invariants, rather than global system-level
properties.

« Construction of the composition of MI and SI, includ-

ing a proof strategy that first establishes that MSI be-

haves as MI + SI and then verifies the correctness of

MI and SI, thereby ensuring the correctness of MI+SI

and consequently MSI (see section 4).

Introduction of nondeterminism to simplify proofs and

enhance protocol generality (see section 4).
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« Extension of the proof methodology from a single
cache line to multiple cache lines (see section 5).

In the rest of this paper, we first we give some background
to cover the basics of cache-coherency protocols, the stan-
dard notion of refinement we use to define the correctness of
cache-coherency protocol, and we give an intuition for the
traditional challenges involved in finding global inductive
invariants to prove correctness of cache-coherency protocols.
We then first tackle the verification and formalization of a
minimalist MI system, that lead us to introduce our taxon-
omy of local invariants for cache-coherency protocols and
carving some simple but reusable insights. We then show that
going from the simple MI, the seemingly more complicated
MSI invariants is counterintuitively very straightforward.

We then elaborate on our decomposition of the MSI pro-
tocol, our use of nondeterminism, the extension to multiple
cache lines, and an evaluation with randomized testing of
a manual translation of the code to a RTL (hardware) im-
plementation, to sanity-check that our design indeed works.
We finally contrast our approach with the existing literature.

All the proofs presented are formalized in the Lean4 proof
assistant, and the development is open-source.

2 Background and Motivation

This section introduces the MSI protocol and provides an
intuitive characterization of its correctness. It then highlights
the inherent difficulties in reasoning about such protocols
and explains why establishing the correctness of MSI, in
particular, constitutes a challenging verification problem.

2.1 MSI protocol description

In an MSI protocol, there is a central directory, called the
parent, which stores multiple cache lines. Each cache line in
the parent contains a memory address, the value associated
with that address, and its current state. The system also
includes multiple caches, called children, which can request
the parent to store one or more of these cache lines locally.
By doing so, a child can perform read and write operations
on the data locally, without contacting the parent every time.
Intuitively, we want our MSI protocol to provide the same
properties as a centralized system, where there are no caches
and each CPU can access the memory directly (figure 1).

To achieve this, we must ensure that in our shared-memory
system, every cache can always read and write the most re-
cently updated value. To maintain this coherence property,
each cache line can be in one of three possible states: Modi-
fied (M), Shared (S), or Invalid (I). When a cache line is in the
M state, the cache has exclusive ownership and can both read
from and write to it. In the S state, the cache has read-only
access, while in the I state, the cache cannot read or write
to the line.

Figure 2 shows an example of the execution of the protocol,
where one cache is in the M state, which means it can read and
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Figure 1. Left: a cache-memory scheme in which the CPU
first attempts to retrieve data from the associated cache; if the
data is not available, the cache forwards the request to the
directory, hich coordinates requests from all caches, keeps
track of the data stored in each cache, and accesses main
memory as needed. Right: a centralized memory scheme in
which the CPU forwards requests directly to memory.

modify the data directly without requesting any information
from the parent. The second cache, however, is in the I state

and therefore cannot perform either load or store operations.

When this second cache receives a load request, it cannot
satisfy it immediately because of its current state. To serve
the request, it must first obtain at least the S state. For this
reason, it sends a message requesting the S state S7, to the
parent (the superscript c indicates that the source of the
message is a cache, while the subscript rq indicates that the
message is a request). The parent maintains a local directory
state that tracks the states of all caches. It cannot respond
immediately to the request, because doing so would result in
a configuration with one cache in M and another in S, which
is illegal. This would break coherence: the cache in M could
continue modifying the data while the cache in S would only
see an outdated value.

To ensure coherence, the parent must first instruct the

cache in M to invalidate its line, transitioning from M to I.

This is done by sending a request for invalidation I?q (the
superscript p indicates that the source of the message is
a parent). Only once the invalidation is confirmed can the
second cache safely move to S. The parent enforces this by
waiting for a response confirming the invalidation I{; (the
subscript rs indicates that the message is a response), in
which the first cache certifies that it has downgraded its
state and provides the latest value it has written. Once this
response is received, the parent updates its records, knowing
that the first cache is now in I, and then replies to the second
cache with a message granting the S state I’ allowing it to
move into S with the up-to-date value.
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2.2 About Behavior and Refinement

In this section, the approach for proving coherence of a
protocol is described by introducing standard concepts such
as behavior and refinement. Behavior is defined as a trace
of external events, such as load requests, load responses, and
store requests.

Coherence of a protocol is established by proving a refine-
ment. An implementation I refines a specification S, denoted
I C S, when the set of traces of Iis included in that of S. The
purpose of refinement is to show that the complex imple-
mentation, the MSI protocol, can be correctly represented
by a simpler specification model, such as a central mem-
ory system (figure 1). Since central memory is coherent by
definition, the implementation inherits this property.

The refinement is established by defining a simulation
relation between the implementation and the specification,
denoted ¢. Two simulation diagrams, shown below, are used.
The first describes a lockstep simulation between rules emit-
ting external events, which are included in the trace. It states
that if the implementation can step from state i to state i’
emitting event e, and i relates to s by some relation ¢, then
the specification should be able to step from s to some state
s” which relates to state i’ by ¢ while emitting the same event
e. The second diagram represents a simulation in which each
internal step of the implementation is matched by zero or
more internal steps of the specification, such that a new
specification state s” exists with ¢(i’, s”) still holding.

i @ s i @ s

I

e e |
;*
i’ ¢ 35 L

2.3 Proving MSI correctness is a hard problem

To prove this refinement, researchers typically establish sev-
eral intermediate properties (or invariants) that collectively
are used to imply the refinement. An example of a key safety
property of the MSI protocol is that no two caches should
simultaneously hold the same memory address in conflicting
states—specifically, it must be prevented that two caches are
in state M, or one in M while another is in S, for the same
address. This indeed will break the coherency of the mem-
ory, because a cache can read an old value while the other
cache (in M) already modified it. Proving such a property is
not straightforward. Both the parent and the child caches
operate based on local state, and state transitions are not in-
stantaneous - they depend on the exchange and processing of
coherence messages. Moreover, the parent makes decisions
based on its belief about the state of the children, which may
be outdated or incomplete due to the asynchronous nature of
communication. To prove such properties, we therefore have
to formulate inductive invariants that encompass the global
behavior of the system and implies the property we want



CPP ’26, January 12-13, 2026, Rennes, France

Figure 2. State transitions and message exchange (S;,, Ilr)q,
cache holds M.

to prove. In this section we will go through the example in
figure 2 to show the steps needed to prove that bad states
are unreachable.

For simplicity, let us consider a system with only two
caches and a single parent, handling just one cache line.
Since there is only one line, its address does not need to be
specified.

In the example in figure 2, one possible invariant to prove
that the Mand S configuration is illegal could be the following:
we cannot simultaneously have, for one cache, a response
message Sk from the parent that authorizes the child to
move into state S, and, for another cache, a parent response
message MPs that grants permission to transition into state
M, both present in the parent-to-cache channels at the same
time. Let us define the channel from the parent to the first
cache as pcl, and the complementary channel from that cache
to the parent as cp1. For the second cache, we use pc2 and cp2.
Then, one invariant can be expressed as shoe pel — MEs ¢
pc2, together with all the possible permutations between
signals and queues. This ensures that S5 and MY, are mutually
exclusive and cannot be present at the same time in any of
the channels.

To establish that this property is an inductive invariant, it
must be shown that it holds in the initial state of the system
and is preserved under every atomic action the system can
perform. By satisfying these two conditions, the property
is guaranteed to hold in all reachable configurations. For
actions that do not produce sP. or M, this preservation is
trivial. But let us assume that there is an M, already in the
system, and consider the action in which the parent produces
an Shy. How do we prove that the invariant is preserved? We
must show that this leads to a contradiction, since the parent
cannot send an Sk, if it believes that a cache is in M.

At this point, we need to link the parent’s belief with
the presence of MY in the system. This requires introducing
a new invariant: if there is an MY in the channel from the
parent to a cache, then the parent believes that this cache is
in M. But this new invariant cannot be proved in isolation. We
must add another one: if there is an M?s in the system, then
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there cannot simultaneously be an I} in the complementary
channel from the cache to the parent. Otherwise, when the
parent consumes the Ij, and updates its belief about the
cache’s state to I, the M?s would still remain in the system,
and we could no longer prove that the parent believes the
cache is in M, because in fact it just updated its belief to I.
This shows how the chain of invariants can grow: each
invariant may require another one to support it, and so on,
until the set of invariants is inductive. This is the typical
process to prove one key property of the system. However,
in practice we often need to prove several properties, each
potentially requiring its own chain of invariants. As a re-
sult, the set of invariants can quickly become very large
and difficult to manage. A key contribution of this work
is showing that it is unnecessary to iteratively search and
find these global invariants. Even for proving global proper-
ties—such as the impossibility for two caches to be in states
M and S simultaneously— we will see that it is sufficient to
consider a collection of local invariants involving only a sin-
gle cache and its parent. This approach simplifies invariant
discovery by reducing the analysis to local smaller subsys-
tems and eliminating the need to account for interactions
between signals in different cache—parent channels. Coun-
terintuitively, even in the example, there is no need to define
invariants enforcing the exclusivity of sP. and MY across
different cache-parent queues, because the parent’s local
directory already contains all the necessary information.

3 Verifying MI and Formulating a
Generalised Invariant

This section will first describe a minimal MI and describe

how it refines the central memory specification (Seq) by for-

mulating an invariant. This invariant is shown to generalise
to MI, SI and MSI.

3.1 MI description and proofs

We will start by describing a restricted cache coherence pro-
tocol called MI. In MI, the cache can only be in one of two
states: I or M. Regardless of whether a load or store request
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J AV =N (identifier, address, value)
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x ExE (external queues)

Figure 3. State definition of the state of MI.

is issued, the cache must be in the M (Modified) state in order
to either store or load a value. Unlike MSI, the S state is not
present. To preserve coherence, no two caches may be in the
M state simultaneously. The concepts described in this section
as well as the structure of MI will also be valid and similar to
those of the other protocols described in later sections, such
as MSI itself. We first describe how we model an MI system.
We then describe the invariant that is sufficient to prove that
MI is coherent and provide a taxonomy for this invariant
that will be useful for understanding other systems.

Figure 3 shows the entire state of the MI system, which
we denote as SM!. It comprises a set of V' cache states (SM)
for each child cache in the system, as well as the state of the
parent cache (53’” ). We generalise over the number of child
caches because this already avoids some duplication when
defining the rules of the system. Next, the parent and child
cache states are very similar. At the core of the cache there is
a single cache line CM with the state of the line, the address,
and the value. In addition to that, all caches also have sets of
internal events that they can use to communicate, one for
messages from the parent (?(ES/H )), and one for messages
from the child (P(EMT)). To model the fact that messages can
overtake each other, we store messages in a set, without order.
The MI system has four types of messages, two responses and
two requests, all related to the I and M states. The response
messages are:

- My, which instructs the child to upgrade from I to M
for a given address and value.
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- I, which informs the parent that the child has down-
graded from M to I. Here, u represents exactly this
downgrade: in the MI system there is only one such
downgrade, while in the MSI system there will be two,
one for the downgrade from M to I (namely I{,) and
one for the downgrade from S to I (namely I}).

The request messages are:

- M;y» with which the cache asks the parent to allow a
transition to the M state.

- Ilr)q, which indicates that the parent requests the child
to downgrade from M to I. Again, here prepresents this
particular request. In the MSI system there will also
be a request to downgrade from S to I, represented by

the Ifq message.

Figure 3 also shows the state of our sequential memory
854, which only consists of the external queues and a mem-
ory. The transition system of MI acting on this state is sep-
arated into transitions acting on the parent state and tran-
sitions acting on the child state. Furthermore, there are ex-
ternal transitions acting on each child which will add load
request Ld,, and load response Ld, into the external request
and response queues. The parent has access to the main
memory, and there are transitions that will flush the state
of the parent to main memory when a different address is
requested by one of the children.

Without going into detail about the specific transitions
associated with MI we will sketch a proof of refinement by
simulation between MI and Seq. To prove refinement, we
have to find a simulation relation ¢ between states of SM!
and states of $5¢. In addition to the ¢, we generally also
need an invariant which can state, for example, that certain
states are unreachable. In the case of the MI system we need
to show that no two caches can be in the M state for the same
address. Because the cache we are modelling is inclusive, this
condition can be relaxed to stating that no two caches can
be in the M state. Here we will just consider a few projection
functions to extract parts of the overall state.

caddr : SMI — 4, -val : SML 5V, st 2 SMT 5 (1| M)
-.mem : 5{)\4] - A >V, - dir. : Sgﬂ >N > (1M
em @ SME— P(EMD), .cm, : SQ/H — N — P(EMD)

~pm = SM — P(EMD), -pm 2 ST > N — P(E))

We note that the state transition system of MI ensures that
p-pm, always equals ¢;.pm, and p.cm; always equals ¢;.cm,
since they represent the same channels connecting parent
and child in both directions. In the invariant description, we
adopt the parent notation p.pm, and p.cm;. We can formulate
the complete invariant /(c, p), assuming that (c, p) € SMI,
on the MI system which implies the desired property using
the following eight conjunctive clauses.
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1. Signal to state
« M € ppm, — pdir; =Magst=1.
o I, € p.em; — pudir; =MAac.st=1.
2. Signal uniqueness
« There can be no two M.
+ There can be no two I¢,.
3. Overapproximation
« If a cache is in M the parent must believe it is in M:

G.st=M — pdir; =M

« If the parent believes the cache is in I, the cache
should be in I:

pdir;=1 — ¢gst=1

. Relation between signals
e IS € pem; — Mp ¢ p-pm..

5. Conflicting Configurations

« If the parent believes a cache is in M, no other cache
can be in M:

All the conjunction states defined above are local, as they
concern only the parent subsystem p and a generic cache c,
and we prove that these are all the conjunctives necessary
for ¢/ to be inductive. No invariants relate the states of differ-
ent caches or signals in different parent-cache channels. In
other words, contrary to what might be expected, no global
invariants such that

Mbs € ppm; — Mrs € ppm;

where i and j are two distinct caches, are required.

Conversely, if we would like to prove global properties of
the system, for example, that two caches cannot simultane-
ously be in the M state, this can be achieved by relying solely
on the local invariants defined above. Thus:

Lemma 3.1. Y(c,p) — Vjigst=Maj#i — cpst#M

Proof sketch. The conflicting configuration (conjunction 5.)
together with overapproximation (conjunction 3.) imply that
there is only one cache in the M state. Intuitively, if a cache
is in M, then the parent must believe that this cache is in M.
Moreover, the parent cannot simultaneously believe that two
distinct caches are in the M state.

O

Theorem 3.2 (MI refines Seq).
MI C Seq

Proof sketch. We formulate a ¢ which relates the main mem-
ory in MI to the main memory in Seq, except for the value
associated with an address that is in a cache in an M state, is
in an IS, message or is in an M{; message. Together, ¢ and
our invariant i form our simulation relation which implies
the refinement. g
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3.2 Invariant taxonomy description

Based on the specific example already illustrated for MI, we
now present the general taxonomy of invariants.

To introduce the taxonomy, certain assumptions about the
protocol to be modeled are required. A base state is defined
(for example, the I state in MSI, MI, and SI). The set of all
possible states is denoted by X (e.g., in MSI: I, S, M). A set of
conflicting states, 3¢, is then defined as tuples of states
that cannot occur simultaneously. For instance, in MSI it is
not possible to have one cache in M and another cache in

S, hence (S,M) € Z%ﬁ; Similarly, in MI the configuration

M,M) € Zg/gl f is forbidden, since having two or more caches
in M is not allowed.

An upgrade relation (<) is defined over all states that are
not part of a conflicting configuration. For example, in MI
it holds that I < S.In MSI, both I < S and I < M hold, but
S < M cannot be stated because (S,M) € Z%‘fgp In all MI,
SI, and MSI protocols, the order relation is defined between
at most two states, such as A < B. There is no transitive
ordering of the form A < B < C. The state B is referred to as
the upgrade state, while A is referred to as the downgrade
state. The upgrade state is M in MI, while in MSI the upgrade
states are both S and M.

Two classes of signals are introduced:

« U, the upgrade response from the parent to the cache
(e.g., MLy in MI),

« Df, the downgrade response from the cache to the
parent (e.g., If, in MI).

Counterintuitively, in the invariant taxonomy, focus is
placed solely on U and DS, and we show that requests can
be ignored. We define a directory-based protocol, in which
parent nodes maintain local views of the state of each cache.
Naturally, these beliefs (p.dir;) may be outdated due to the
asynchronous nature of cache coherence protocols. We now
present an intuitive taxonomy of these invariants. Since all
conjunctions hold uniformly for every cache, we omit the
explicit quantification over caches. The conjunctions can be
naturally grouped into 4 distinct classes:

1. Signal to State
« If there is an in-flight upgrade response message
from the parent to the cache, the parent believes that
the cache is in the upgrade state, while the cache
itself remains in the downgrade state.

U € ppm;, = pdi;=Uncgst=D

« If there is an in-flight downgrade response message
from the cache to the parent, the cache is in the
downgrade state, while the parent believes that the
cache is in the upgrade state.

Dgs € p.cm; — p'diri =U~n Cl-.St =D

2. Signal Uniqueness



Towards Composable Proofs of Cache Coherence Protocols

« In the channel from parent to cache, all upgrade
responses for a specific state are unique:

Uls € p.pm; A UL € ppm, — U =U"

« In the channel from cache to parent, all downgrade
responses for a specific state are unique:

DS € p.em; A D'f € pem; > D =D’

3. Overapproximation
« The parent’s belief always over-approximates the
state of the cache:

¢.st X p.dir;

4. Relation Between Signals
« If there is a downgrade response from the cache to
the parent, there cannot be an upgrade response
from the parent to the child:

DS, € pem; — UL ¢ p-pm,

5. Conflicting Configurations
« For all conflicting configurations, the parent cannot
believe that such a configuration exists among the
caches:

VijV(x,y) € Zeonp.  pdip=x — pdir;=y

Invariant locality. A key characteristic of our invari-
ant taxonomy is its simplicity, not only in terms of having
few conjunctive clauses, but also because we do not need to
reason about signals or states across different caches. Con-
sequently, each conjunctive clause concerns only the rela-
tionship between a single cache and its parent; there are no
clauses that, for example, assert that if a signal is present in
a channel between a parent and one cache, another signal
cannot be present in a channel between the same parent and
a different cache, as in the example described in Section 2.
In other words, all our conjunctive clauses are local to the
cache—parent subsystem. We then extend the result by assert-
ing that the same property holds for all other cache-parent
pairs in the system. This approach explicitly exploits the
modularity of the system, allowing us to reason about one
cache-parent subsystem independently of others. An impor-
tant benefit of this modularity is that it facilitates scaling
the system to a parametric number of caches, as extending
the invariants to additional cache-parent pairs is straight-
forward.

SI invariant. The taxonomy is applied to describe the
invariants for the SI state. The invariant is composed of seven
conjunctive clauses, grouped into four categories. In the SI
protocol, there are no conflicting configurations; therefore,
the last category of the taxonomy is not applicable. The
upgrade relation is defined as I < S, resulting in a single
upgrade request and response signal associated with the S
state.
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3.3 From SI and MI Invariants to MSI Invariants

A notable observation is that we get inductive invariants of
the MSI model with precisely the conjunction of the SI and
MI invariants, and consists of only 14 conjunctive clauses,
significantly fewer and more structured than reported in
the state of the art [Tan et al. 2025; Vijayaraghavan 2016].
Counterintuitively, it is not necessary to consider potential
interference from Sty and MY, overapproximation between S
and M. The combination of the SI and MI invariants alone is
sufficient. All conjunctions of MSI correspond precisely to
the combinations of the conjunctions of SI and MI, except in
the case of over-approximation, where duplicate clauses con-
cerning the I state can be eliminated, and in cases involving
conflicting configurations. We chose not to merge I: and I
because one does not have to carry data as it can simply be
discarded. We also did not merge I}, and I}, mainly because
real-world protocols might also distinguish between such
requests [Tan et al. 2025]. Consequently, the conjunctions
related to signal-to-state and signal uniqueness do not intro-
duce duplicates, unlike in the case of overapproximation.

This example illustrates how compositional reasoning al-
lows one to avoid re-proving all statements for a larger sys-
tem such as MSI. In particular, the conflicting configuration
clause M and M does not need to be re-established for MSI,
as it has already been proven in the MI component. The
invariant for MSI is therefore:

1. Signal to state
« Signal to state of SI
« Signal to state of MI

2. Signal uniqueness
« Signal uniqueness of SI
« Signal uniqueness of MI
3. Overapproximation
s gst=M — pdir; =M
e c.st=S — pdir; =S
o pdir; =1 —qst=1
4. Relation between signals

» Relation between signals of SI
+ Relation between signals of MI
5. Conflicting Configurations
« V), pdip =MAj#i - pdir; #S.

4 Verifying MSI by Composition

Instead of attempting a direct proof of correctness, our ap-
proach focuses on decomposing the problem. We first prove
that the MSI protocol can be expressed as the composition of
the MI and SI protocols, and then show that this composition
behaves as a single sequential memory by using the fact that
each of the protocols MI and SI behaves like a sequential
memory (theorem 3.2). The main challenge, therefore, lies
not in proving MI or SI individually, but in establishing that
MSI indeed behaves as their composition. The key insight is
that a correct MSI protocol naturally enforces consistency by
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forbidding conflicting cache states, such as one cache being
in the Modified state while another is in the Shared state.
This exclusivity implies that, at any point in time, the system
effectively operates either in MI mode or in SI mode, but
never both simultaneously. If the behavior were to mix these
modes improperly, the protocol would violate coherence.
Thus, our proof approach leverages this symmetry to formal-
ize MSI as the disjoint union of MI and SI behaviors, making
the overall correctness argument more modular, simple and
comprehensible.

It is important to emphasize that the intermediate system
MI+SI is not intended as a hardware design, but as a veri-
fication artifact introduced solely for the purposes of proof
decomposition. The following subsections first formalize the
MSI system, then describe in detail the composition MI+SI.
The proof structure is subsequently presented, with partic-
ular attention to the intermediate step from MSI to MI+SI,
together with an explanation of how introducing a degree
of nondeterminism facilitates the argument.

4.1 Formalization of MSI

The MSI protocol, for which correctness is established, adopts
the same design choices as the MI protocol described in sec-
tion 3. In particular, the number of caches is parametric, and
the communication channels between caches and the parent
are modeled as sets rather than queues, thereby mimicking
out-of-order communication. Another feature is the assump-
tion of an inclusive cache hierarchy, which implies that the
parent stores all cache lines held in the children. For example,
if two caches each contain two lines, then the parent holds a
total of four lines.

The state definition of MSI is very similar to the one shown
in figure 3 for the MI system. The differences, illustrated
in figure 4, are that a cache line M5 may now also be in
the S state, and correspondingly the parent’s belief BMS
may include S as well. New signals are introduced: a cache
may request to move to the S state, and the parent may

respond with an approval for this transition, namely S;,

and SP, respectively. As in the standard MSI protocol, two
further signals handle downgrades from S to I. Specifically,
when a cache in S is downgraded, it sends I}, which does
not require a value since S does not involve modifications.
Symmetrically, if the parent’s belief is that the cache isin S,
it sends I?q.

Two example transition rules are presented—one for the
cache and one for the parent—to illustrate the semantics
using the notation introduced in section 3.

In figure 5, the rule corresponding to a cache in the I
state handling a MES is shown. Above the horizontal bar, the
precondition of the rule is specified: the channel between
the parent and the cache contains a M., and the cache is in
the I state. Below the bar, the postcondition describes how
the cache state is updated. In particular, the cache transitions
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CMST 2 (T|S|MxAxV (MSI cache line)
EMSL = 16 7 A1, T AV

| Stq T AIMy T A (MSI child events)
EMSI 210 T ATE T A

| b, T AV M T AV (MSI parent events)
BMSI 2 — (1S |M) (directory/belief)

Figure 4. State definition of the state of MSI.

HANDLING_RSM
Mbs(a, t,v) € c.pm
cst :=M
paddr :=a
c—q¢// pval :=v

cpm :=c.pm \ My(a,t,v)

cst=1

Figure 5. MSI internal cache state transition relation.

RQM_DATA_AVAILABLE
M;‘q(a, 1) € p.cmy pst=1
pst =M
paddr :=a
p— 4 p// pval := pmem(a)

pem; := pem; \ M (a,1)

p-pm, 1= ppm, U Mbs(a, t)

Figure 6. MSI internal parent state transition relation.

to the M state, stores the new value v at the new address q,
and removes the M message from the channel.

Similarly, figure 6 illustrates a parent rule. In this case, if
the parent receives a I}, from the same cache i, the parent
is in state I, and it believes that all other caches are also in
I, then the parent can update its state to M, fetch the value
associated with the write address from memory, generate a
M:, message, and produce the M signal.

4.2 Combination of MI and SI

The central idea of the composition proof is to demonstrate
that MSI E MI+SI C Seq. However, in order to capture the
full behavior of the MSI protocol in MI+SI, we must allow
the system to switch between the two worlds. These transi-
tions must be carefully designed to preserve the necessary
information so that, when returning to a previously active
world, the protocol can resume execution correctly.
Technically, we define the MI+SI state as an union type:
the system is either in an MI state or in an SI state. The
key insight is that a switch between the two worlds is only
allowed when all caches and the parent are in the invalid
state I. In this configuration, we do not need to retain any
cache data, as the parent being in | guarantees that the most
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recent value has already been written back to main memory.
When a world switch occurs, we reinitialize the caches and
the parent with default values, preserving the | states. These
default values are used for both the address and the data
fields in the cache and parent registers, as these fields are
irrelevant in the | state. Since the meaning of | is identical in
both MI and SI models, this transformation is safe.

Importantly, we do not require the communication chan-
nels between caches and parent to be empty at the switching
point, as enforcing such a condition would be overly restric-
tive. Instead, we snapshot the set of in-flight messages and
store them. For instance, during a switch from SI to MI, we
save all messages from the SI channels and restore the most
recent set of MI messages previously saved before switching
to SI (section 4.4 presents an example of world switching).
This mechanism ensures that each world maintains its own
independent set of messages, which are only modified while
the system is in that specific world. In summary, the combi-
nation of disjoint state execution and safe world switching
enables us to model the MSI protocol by composing MI and
SI behaviors in a coherent and well-structured way.

4.3 Proof structure

To prove that MSI works equivalently to the sequential mem-
ory model, we will prove a refinement between the two sys-
tems, by exhibiting a simulation relation. Specifically, we will
prove that the MSI protocol refines (C) a sequential memory.
Formally, the refinement is established via the following two
theorems:

Theorem 4.1. MSI C MI+SI
Proof sketch. Proof sketched in section 4.4.
Theorem 4.2. SI C Seq A MI C Seq — MI+SI C Seq

Proof sketch. Recall that the state of MI + SI is a union type.
Performing a case analysis on this union generates two sub-
goals:

MIC Seq and SIC Seq.

Both subgoals can be discharged directly using the hypothe-
sis. (]

As a consequence, by transitivity of C, the desired refine-
ment result follows:

MSI C Seq (1)

4.4 Proofs under Nondeterminism

The most challenging part of the proof concerns theorem 4.1.
To facilitate the refinement argument, the definitions of MI
and SI are slightly relaxed so as to admit nondeterministic
behavior. This modification does not introduce any difficul-
ties in proving MI C Seq and SI T Seq. Concretely, for a
given system state and a set of messages in flight, the system
is allowed to choose among multiple possible transitions,
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rather than being constrained to a uniquely determined step.
In cache coherence protocols, state changes are usually en-
abled only when specific conditions on the current state or
on pending messages are satisfied. By relaxing some of these
enabling conditions, nondeterminism is introduced into the
protocol definition, without affecting the correctness argu-
ment. An example of this is shown below, where an M;, signal
may be sent even without the condition of having a store
request in the external queue. In this case, the transition can

occur spontaneously when a cache is in the I state.

PRODUCE_RQM
cst=1

c—{c//cem i=cemuM(at,v) }

Intuitively, nondeterminism makes the system more gen-
eral, as it admits a broader set of behaviors. This generality
is useful in refinement proofs: to establish refinement, it suf-
fices to show that the behavior of MSI is a subset of the (more
general) behavior of the nondeterministic MI+SI system.

To illustrate this idea, we analyze a representative case
from the refinement proof. The proof proceeds by defining
a simulation relation between the implementation and the
specification, which captures the correspondence between
their states. Then, it must be shown that for every step in
the implementation (in our case, MSI), there exists a step or
sequence of steps in the specification (MI+SI) such that the
relation is preserved.

Let us consider an action in the MSI system where every
cache and its parent are in the I state, and the parent receives
aM;, from a cache. In this scenario, the parent can fetch the
value from memory and send it back to the requesting cache,
thereby generating a Mj; message. The parent also updates
its belief about the cache state from I to M and raises the
M:, message. Figure 7 illustrates the state of the system at
the end of this transition step. In the MI+SI system, the
configuration may instead correspond either to the MI or
to the SI world. To establish refinement, it is necessary to
construct a sequence of actions starting from both worlds
such that the resulting state coincides with that of MSI.

The most difficult case occurs when the system is initially
in the SI world. In this case, a world switch is required,
since in the end a ME, must be sent, and such a signal does
not exist in SI. This switch is safe because all caches are in
I, making the transition consistent. After the switch, the
steps can be performed in the MI system to reproduce the
behavior of MSI, namely handling the M7, and producing a
MP;. Concretely, this requires generating a M:q in MI, fetching
the value from memory, and sending back a My with the
value to the cache. At this point, the state of the system and
the messages in flight are the same in MSI and in MI, proving
that there exists a sequence of actions in MI+SI such that
the two systems remain related. This process is visualized in
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Figure 7. MSI state transition for han-

dling M;,, resulting in My

figure 8, which illustrates the three transition steps of the
MI + MSI system described above.

The first question is: why must a M;, be generated in the MI
world, rather than already being present as in MSI? Consider
the case where, in the MSI system, a cache sends a ng while
another cache is in the S state. In this configuration, MSI is
related to the SI world, since in MI the S state is not possible.
The generation of the M, is valid in MSI, but it cannot happen
in SI, where such a signal does not exist. This implies that,
after the parent invalidates the cache in S and the system
can finally be related to the MI world, the M is no longer
present in the channel. Recall that, when switching worlds,
only the signals generated in that world are put back into the
channel; since this M; | was generated while MSI was aligned
with SI, it cannot appear in MI.

The second question is: why must the M be generated non-
deterministically? The external queues of read and write
requests are assumed to be the same in both MSI and MI+SI.
One might wonder why the M;, cannot be derived directly
from the first request in the queue. This would be possible,
but it would require introducing an additional invariant re-
lating the external queue to the internal signals, such as: if
there is a M;,, then the first element of the external queue
must be a write request. To avoid introducing such invari-
ants, which would lead to a long and complex chain of proofs
as in previous work, the step of generating a M;, is instead
allowed nondeterministically, without relying on the queue.

This example shows how nondeterminism can play a cru-
cial role in refinement proofs. By permitting additional be-
haviors in the MI+SI system, it becomes possible to avoid
introducing further invariants about MSI, thereby reducing
both the number and the complexity of the proofs while still
establishing refinement.

Nondeterminism for general behavior. Some charac-
teristics of our MSI implementation, such as the parametric
number of caches and the use of out-of-order communica-
tion channels, are sufficiently general to be reused across

Figure 8. MI+SI state transition for handling M;,
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different settings. For example, to verify a specialized vari-
ant of the MSI protocol—denoted MSI’, with a fixed number
of caches and ordered communication channels—it is suffi-
cient to establish MSI” T MSI. By transitivity of refinement,
MSI” can then be regarded as a refinement of the sequential
memory model Seq.

The compositional structure of the proofs further enhances
scalability. If only a subprotocol of the system is modified,
rather than the entire protocol, it is enough to reason about
the refinement of the modified subprotocol in isolation. For
instance, if a modified version of the MI protocol (MI”) is
introduced, it suffices to prove that MI” C MI. All higher-
level results, from MSI up to Seq, then remain valid without
requiring additional proofs.

5 Extension to multiple cache lines

Until now we have only dealt with a single cache line and
a single address, which simplifies the system. Obviously,
real caches operate on more than one address, so we would
like to be able to build a cache with multiple addresses, but
we would like to reuse the basic protocols we have already
defined.

We call the multiple cache line implementation of the MI
protocol MImult. The goal is then to find a way to prove
that this protocol is coherent, using the building blocks that
we already have. To do this, we want to find a way to com-
pose multiple MI, each modeling a single cache line, thereby
simulating multiple cache lines.

5.1 Attempt #1: MImult C MI C Seq

The first idea one might try is to prove MImult C MI, which
would then imply MImult C Seq. The main problem with this
proof is that proving MImult E MI is not trivial. These two
systems cannot proceed in lock-step, because MImult can
keep multiple cache lines in the M state, whereas MI would
have to downgrade every time. This would require complex
formulations for when two states are related, and it seems
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Figure 9. MIdup with two caches (C;, Cy) and two cache
lines. The parent stores both cache lines in state M, since one
of the two caches is in M for each cache line. The directory
records the state of both children, ensuring that if one child
is in M for a cache line, the other can only be in I.

like it might end up being as complex as the original MI C
Seq proof.

5.2 Attempt #2: MImult © Mldup C Seq

Instead, we can create MIdup (figure 9), which is a systems
with duplicated MI state machines for each cache line, and
then prove that the more optimised MImult, where there is
a single state machine that orchestrates the multiple cache
lines, refines it. Each child cache made up of many smaller
single-line caches, and at the boundary between the caches
and the core there is an address translation that will send
requests to the correct core depending on the cache line offset.
Each single-line cache then connects to a single-line parent
cache with a single-line directory (only the connections for
one single-line cache system are shown).

The main problem is that MIdup C Seq is still not actually
easily provable without having to reason about the MI pro-
tocol again, because one cannot simply reuse the MI C Seq
proof.

5.3 Attempt #3: MImult C MIdup C SeqDup C Seq

The final strategy to complete the proof is to add one more
system into the mix, SeqDup. This system duplicates a whole
memory that will be attached to each cache line. This makes
it nearly trivial to prove that the following theorem holds:

Theorem 5.1. MI C Seq — MIdup T SeqDup.

This means that we can reuse the correctness of MI opaquely
to get a proof of a system that handles multiple cache lines.
Next, we need the following theorem:

Theorem 5.2. MImult & MIdup.

Proof sketch. Using a lock-step simulation proof. This is the
longest proof, and even though it is conceptually simple, it
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is quite tedious in practice because one system is running a
single state machine at a higher level, and the specification
is running multiple state machines for each cache line. One
has to therefore specify many properties to relate the states
of these two systems which then have to be proven for every
step. One additional property that is required to relate two
states, which is not required in the original MI proof, is that
the tag of a cache line within an MI cache in the MIdup
system is coherent with the index of the MI cache within
the system. This is needed because tags in our MI system
contain the whole address, and so the cache line index of the
address should be coherent with the index of the cache itself
that contains it. ]

Even though SeqDup contains multiple memories for each
cache line, they are essentially banked, and only contain
addresses that are supposed to be assigned to that cache
line, meaning SeqDup C Seq is relatively easy to prove. The
main subtlety is reasoning about the external request/re-
sponse queues. In SeqDup, addresses are associate with dif-
ferent caches, which can execute in a nondeterministic order,
whereas in Seq there is a single external request and response
queue which has to be handled in order. This means that if
SeqDup handles a request, it might not be possible to han-
dle that request in Seq, because other requests have to be
processed beforehand.

We therefore have to restrict SeqDup to only include the
valid executions that can also be observed by the sequential
memory with a single request/response queue for each cache.
A global state is added, which determines exactly which
address is now allowed to be processed in each of the caches.

6 Evaluation

To validate the practical functionality of our MSI protocol
and evaluate its liveness (a property not covered by our for-
mal proofs), we translated the Lean formalization of our MSI
protocol into synthesizable Bluespec [Nikhil 2004] hardware
modules. We then tested the Bluespec design with random-
ized tests.

Translating transition relations of the MSI protocol to
Bluespec is straightforward thanks to the rule-based nature
of Bluespec: specifically, the preconditions of each construc-
tor of our inductive predicates (i.e. transition rule of the
system verified) directly correspond to the guard of a corre-
sponding rule in Bluespec, and the consequent describing the
state of the module after the transition corresponds to action
methods in the body of the rule. We systematically but man-
ually instantiated and tested a Bluespec design from the MSI
formalization in Lean, an effort that required approximately
three person-days.

Our system features a 2-level hierarchy with two 64 KB
L1 caches and a 64 KB L2 cache (While the identical L1 and
L2 sizing is a simplification - as discussed in the limitations
section - it is sufficient for the purpose of this evaluation .
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We validated the design using two randomized differential
testbenches, both comparing our system behavior against a
two-ported atomic memory reference design (as shown in
figure 1).

The first testbench issues randomized load and store re-
quests to both the implementation and the specification, con-
strained to a single in-flight request per port. The test asserts
that the responses from the two designs match until 100,000
load responses have been received. In a second similar test-
bench, we aim to test multiple in-flight requests. To avoid
the challenge caused by nondeterministic answers from the
reference design, the address space of the requests sent to
these two ports are disjoint; this avoids significant complica-
tion related to memory ordering during testing, while still
permitting aliasing conflicts between the two L1 caches. Our
Bluespec design successfully passes these tests.

6.1 Lean Formalisation and Limitations

In this section we will discuss the lean formalisation and its
limitations. The total size of the lean 4 development is 9228
lines of code excluding white space and comments [Camaioni
et al. 2025].

Firstly, the nondeterminism added to MI and SI is cur-
rently only used to simplify the proof of MI+SI and MSI.
Instead, we believe we could take more advantage of the
nondeterminism and introduce new transitions in MSI that
did not and could not exist in either MI or SI alone. For ex-
ample, it should be possible to add a single transition from M
directly do S in a cache, and show that it can be simulated by
chaining rules in the existing MSI that go through the I. This
would further demonstrate the flexibility of nondeterminism.

Next, the extension of the protocol to multiple cache lines
currently is only for MI system and can only handle cases
where the size of the child cache is the same as the size of
the parent cache. In practice, this is not the case because
child caches will want to use faster, smaller memory. In ad-
dition to that, when one cache line is in M, the other cache
lines have to be in I, because inclusivity forces the same
cache line in multiple caches to have the same address. With
a parent that has a much larger cache, it could still be in-
clusive while allowing multiple caches to be in M for that
cache line but for different addresses. In keeping with our
methodology of reusing proofs and modularity, we envision
to address systems with a smaller L1 than L2 cache again via
a refinement strategy. We will begin by viewing our existing
model with equal cache sizes as an intermediate abstraction.
This model will then be constrained with preconditions that
render a subset of L1 cache lines unusable and inactive (a
simple refinement of the current system). The final step will
then to prove that the concrete system, which will feature a
physically smaller L1 cache, refines this intermediate model
with inactive lines.

349

Martina Camaioni, Yann Herklotz, Tz-Ching Yu, and Thomas Bourgeat

7 Related Work

Formal verification of cache coherence protocols using
interactive theorem provers. Vijayaraghavan et al. [2015]
was the first to formalise a directory-based MSI system in
the Rocq prover. The system itself supported an arbitrary
tree hierarchy of caches, however, one had to find more than
50 invariants in higher-order logic, detailed in the disserta-
tion [Vijayaraghavan 2016], to prove the overapproximation
property of the MSI protocol. Unlike other formalisations,
this work also extended the system to support multiple cache
lines. Following this work, Hemiola [Choi et al. 2022] was
designed to provide a language in which one can imple-
ment and verify cache coherence protocols, providing useful
shared infrastructure accross protocols for handling arbi-
trary memory hierarchies. They also tackled the problem
of specifying and proving invariants, requiring a proof that
all concurrent behaviors of the system are linearizable and
using that two specify invariants by specifying traces. Fi-
nally, they had an unverified but automatic compilation from
the single cache line description of the protocol to a multi
cache line implementation. However, they still need around
50 invariants, and due to the nature of them being specified
as traces, they are often non-local and difficult to verify. Fi-
nally, Tan et al. [2025] formalised CXL.cache [Cutress 2019]
in Isabelle as an MSI model. They note that they needed
796 invariants and 53332 lemmas to prove the single writer,
multiple reader (SWMR) property, a necessary invariant for
sequential consistency. We believe that we could use our
invariant and proof technique to also prove this protocol,
significantly simplifying the proof. There have been other
proofs of cache coherence, such as in PVS [Stoy et al. 2001]
or ACL2 [Moore 1998].

Using model checkers. The Mur¢ [Ip and Dill 1996]
description language and compiler have been successfully
used to verify many cache coherence protocols [Chou et al.
2004; Komuravelli et al. 2014; Oswald 2023; Park and Dill
1996; Zhang et al. 2010]. These systems are often parametric
in the number of caches, however, they will mainly model
a single cache line, as well as bounded, in order, message
queues. Next, Emerson and Kahlon [2003] prove a snoop-
based MSI protocol and McMillan [2001] prove the FLASH
protocol correct using the SMV proof assistant based on
symbolic model checking.

Compositional memory models. Related to the compo-
sitional aspect, there has been work exploring compositional
memory models [Goens et al. 2023]. Our work tackles the
single memory model, i.e. sequential consistency, and in
contrast compose and decompose the coherence protocols.

Invariant generation and taxonomies. For distributed
systems (not specific or evaluated on cache-coherence proto-
cols) there have been prior works that introduced automatic
invariant discovery [Yao et al. 2022], as well as invariant
taxonomies [Zhang et al. 2024, 2025] to be used with model
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checkers. These methods generally assume the presence of a
complete histories of visited states to express invariants on,
which works well with model checkers but can be more te-
dious when using interactive theorem provers. Li et al. [2016]
generated invariants automatically from a small reference
model of a cache coherence protocol and generalized it to
apply it to the FLASH protocol in Isabelle.

8 Conclusion and Future Work

To conclude, this work demonstrates that verifying the cor-
rectness of MSI becomes significantly simpler by decom-
posing the problem into smaller subproblems: MI and SI.
We establish the correctness of these two subprotocols and
then derive the correctness of MSI. A key insight is that the
invariants required to describe all three systems are local
rather than global. Moreover, we introduce a taxonomy that
captures a uniform structure across MI, SI, and the full MSI
protocol.

This compositional approach not only simplifies correct-
ness proofs but also opens new research directions. One
important advantage is proof reuse: for instance, extend-
ing MSI to MESI—by adding an Exclusive (E) state—could
potentially be achieved by defining and verifying an EI pro-
tocol and then composing it with the already verified MI and
MI protocols. Crucially, MI and SI need not be reverified,
enabling scalable development of richer coherence protocols.

Another promising direction is to push further the non-
determinism. By proving that a highly nondeterministic,
generalized, cache-coherence protocol (to be defined, encom-
passing a superset of MOESI behaviors) refines to a sequen-
tial specification once, one could then show that any con-
crete implementation (using an arbitrary subset of MOESI
states, with various associativity architectures, NoC reorder-
ing policies, replacement policies, inclusivity policy, down-
grade scheduling policies), is a refinement of the general
nondeterministic model, and thus, by transitivity, also con-
forms to sequential consistency.
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